RESUMO
Cobalt ferrite nanoparticles (NPs) have received increasing attention due to their widespread therapeutic and agricultural applicability. In the environmental field, dry powder- and ferrofluid-suspended cobalt ferrite NPs were found to be useful for removing heavy metals and metalloids from water, while diluted suspensions of cobalt ferrite NP have been promisingly applied in medicine. However, the potential toxicological implications of widespread exposure are still unknown. Since cobalt ferrite NPs are considered residual wastes of environmental or medical applications, plants may serve as a point-of-entry for engineered nanomaterials as a result of consumption of these plants. Thus, the aim of this study was to assess the effects of dry powder and fresh cobalt ferrite NP on wheat plants. Seven-day assays were conducted, using quartz sand as the plant growth substrate. The toxicity end points measured were seed germination, root and shoot lengths, total cobalt (Co) and iron (Fe) accumulation, photosynthetic pigment production, protein (PRT) production, and activities of catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX). Increasing total Co and Fe in plant tissues indicated that wheat plants were exposed to cobalt ferrite NP. Seed germination and shoot length were not sufficiently sensitive toxicity end points. The effective concentration (EC50) that diminished root length of plants by 50% was 1963 mg/kg for fresh ferrite NPs and 5023 mg/kg for powder ferrite NP. Hence, fresh ferrite NPs were more toxic than powder NP. Plant stress was indicated by a significant decrease in photosynthetic pigments. CAT, APX, and GPX antioxidant enzymatic activity suggested the generation of reactive oxygen species and oxidative damage induced by cobalt ferrite NP. More studies are thus necessary to determine whether the benefits of using these NPs outweigh the risks.
Assuntos
Cobalto/toxicidade , Compostos Férricos/toxicidade , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Triticum/efeitos dos fármacos , Antioxidantes/metabolismo , Cobalto/química , Compostos Férricos/química , Germinação/efeitos dos fármacos , Nanopartículas Metálicas , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/biossíntese , Pós/química , Pós/toxicidade , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Testes de Toxicidade , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologiaRESUMO
The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd(2+) and Cr(6+) levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67mgCd(2)(+)kg(-1) and 5.53mgCr(6+)kg(-1). However, when magnetite NPs (1000mgkg(-1)) were added, the root length of the plants increased by 25 and 50%. Cd(2+) and Cr(6+) showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated.