Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 24(12): 3575-3580, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478720

RESUMO

Silicon vacancy centers (SiVs) in diamond have emerged as a promising platform for quantum sciences due to their excellent photostability, minimal spectral diffusion, and substantial zero-phonon line emission. However, enhancing their slow nanosecond excited-state lifetime by coupling to optical cavities remains an outstanding challenge, as current demonstrations are limited to ∼10-fold. Here, we couple negatively charged SiVs to sub-diffraction-limited plasmonic cavities and achieve an instrument-limited ≤8 ps lifetime, corresponding to a 135-fold spontaneous emission rate enhancement and a 19-fold photoluminescence enhancement. Nanoparticles are printed on ultrathin diamond membranes on gold films which create arrays of plasmonic nanogap cavities with ultrasmall volumes. SiVs implanted at 5 and 10 nm depths are examined to elucidate surface effects on their lifetime and brightness. The interplay between cavity, implantation depth, and ultrathin diamond membranes provides insights into generating ultrafast, bright SiV emission for next-generation diamond devices.

2.
Nano Lett ; 23(18): 8547-8552, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37671730

RESUMO

An abundance of metallic metasurfaces have been realized with miniscule, intricate features capable of tailored scattering, reflection, and absorption; however, high losses through heat limit their use in optoelectronics. Here, codesign of a detector and a polarization-sensing metasurface overcomes this challenge by utilizing the heat generation for integrated pyroelectric detection of the incoming light polarization. Using a nanogap metasurface with asymmetric metallic elements, polarization-sensitive photodetection exhibits high extinction ratios up to 19 for orthogonally polarized light and allows extraction of Stokes parameters with <12% deviation from theoretical values. This polarization-sensitive photodetector is ultrathin, consisting of active layers of only 290 nm, and exhibits fast response times of ∼2 ns. The structure is fully integrated, requiring no external cameras, detectors, or power sources, and points toward the creation of layered, multifunctional devices that utilize exotic metasurface properties for novel and compact sensing and imaging.

3.
Nano Lett ; 22(3): 904-910, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044773

RESUMO

Graphene quantum dots (GQDs) are quasi-zero-dimensional, carbon-based luminescent nanomaterials that possess desirable physical properties, such as high photostability, low cytotoxicity, good biocompatibility, and excellent water solubility; however, their long radiative lifetimes significantly limit their use in, e.g., light emitting devices where a fast spontaneous emission rate is essential. Despite a few reports on GQD fluorescence enhancements using metal nanostructures, studies of enhanced spontaneous emission rate remain outstanding. Here, we report fast and bright luminescence by coupling gap plasmon modes to nanoparticle emitters. Through precise control over the nanoparticle's local density of states (LDOS), we achieved a 220-fold increase in the PL intensity. The shortest radiative lifetime obtained was below 8.0 ps and limited by the instrument response, which is over 288-fold shorter than the lifetime of uncoupled GQDs. These findings may benefit the future development of rapid displays and open the possibility of constructing high-frequency classical or quantum telecommunication systems.


Assuntos
Grafite , Nanoestruturas , Pontos Quânticos , Carbono , Grafite/química , Luminescência , Pontos Quânticos/química
4.
Nano Lett ; 22(13): 5151-5157, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35776079

RESUMO

Metasurfaces, artificially engineered surfaces comprised of subwavelength resonators, show promise for realizing a new generation of optical materials and devices. However, current metasurface architectures suffer from environmental degradation, a limited spectral range, and a lack of scalability. Here, we demonstrate a novel large-area embedded metasurface architecture that is environmentally robust and capable of a spectrally selective absorption of greater than 80% spanning from 330 to 2740 nm. These fully encapsulated metasurfaces leverage the capabilities of colloidal plasmonic nanoparticles with various crystallinities, materials, shapes, and sizes to access a larger spectral range and allow for control of nanoscale spatial losses and subsequent heat generation within the constituent elements of the metasurface. Through the selection of material, particle size, and shape, these metasurfaces can be designed across the ultraviolet (UV) to short-wave infrared (SWIR) region for various hot-electron, photodetection, photocatalysis, and photothermal processes.

5.
Nano Lett ; 22(9): 3525-3531, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472261

RESUMO

Actively tunable optical materials integrated with engineered subwavelength structures could enable novel optoelectronic devices, including reconfigurable light sources and tunable on-chip spectral filters. The phase-change material vanadium dioxide (VO2) provides a promising solid-state solution for dynamic tuning; however, previous demonstrations have been limited to thicker and often rough VO2 films or require a lattice-matched substrate for growth. Here, sub-10-nm-thick VO2 films are realized by atomic layer deposition (ALD) and integrated with plasmonic nanogap cavities to demonstrate tunable, spectrally selective absorption across 1200 nm in the near-infrared (NIR). Upon inducing the phase transition via heating, the absorption resonance is blue-shifted by as much as 60 nm. This process is reversible upon cooling and repeatable over more than ten temperature cycles. Dynamic, ultrathin VO2 films deposited by ALD, as demonstrated here, open up new potential architectures and applications where VO2 can be utilized to provide reconfigurability including three-dimensional, flexible and large-area structures.

6.
Nat Mater ; 19(2): 158-162, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31768011

RESUMO

Thermal detectors, such as bolometric, pyroelectric and thermoelectric devices, are uniquely capable of sensing incident radiation for any electromagnetic frequency; however, the response times of practical devices are typically on the millisecond scale1-7. By integrating a plasmonic metasurface with an aluminium nitride pyroelectric thin film, we demonstrate spectrally selective, room-temperature pyroelectric detectors from 660-2,000 nm with an instrument-limited 1.7 ns full width at half maximum and 700 ps rise time. Heat generated from light absorption diffuses through the subwavelength absorber into the pyroelectric film producing responsivities up to 0.18 V W-1 due to the temperature-dependent spontaneous polarization of the pyroelectric films. Moreover, finite-element simulations reveal the possibility of reaching a 25 ps full width at half maximum and 6 ps rise time rivalling that of semiconductor photodiodes8. This design approach has the potential to realize large-area, inexpensive gigahertz pyroelectric detectors for wavelength-specific detection from the ultraviolet to short-wave infrared or beyond for, for example, high-speed hyperspectral imaging.

7.
Nano Lett ; 20(6): 4330-4336, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32375003

RESUMO

Fluorescence-based microarrays are promising diagnostic tools due to their high throughput, small sample volume requirements, and multiplexing capabilities. However, their low fluorescence output has limited their implementation for in vitro diagnostics applications in point-of-care (POC) settings. Here, by integration of a sandwich immunoassay microarray within a plasmonic nanogap cavity, we demonstrate strongly enhanced fluorescence which is critical for readout by inexpensive POC detectors. The immunoassay consists of inkjet-printed antibodies on a polymer brush which is grown on a gold film. Colloidally synthesized silver nanocubes are placed on top and interact with the underlying gold film creating high local electromagnetic field enhancements. By varying the thickness of the brush from 5 to 20 nm, up to a 151-fold increase in fluorescence and 14-fold improvement in the limit-of-detection is observed for the cardiac biomarker B-type natriuretic peptide (BNP) compared to the unenhanced assay, paving the way for a new generation of POC clinical diagnostics.


Assuntos
Bioimpressão , Ouro , Imunoensaio , Prata , Humanos , Nanotecnologia , Testes Imediatos , Polímeros
8.
Nat Mater ; 18(7): 668-678, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30936482

RESUMO

Ultrathin dielectric gaps between metals can trap plasmonic optical modes with surprisingly low loss and with volumes below 1 nm3. We review the origin and subtle properties of these modes, and show how they can be well accounted for by simple models. Particularly important is the mixing between radiating antennas and confined nanogap modes, which is extremely sensitive to precise nanogeometry, right down to the single-atom level. Coupling nanogap plasmons to electronic and vibronic transitions yields a host of phenomena including single-molecule strong coupling and molecular optomechanics, opening access to atomic-scale chemistry and materials science, as well as quantum metamaterials. Ultimate low-energy devices such as robust bottom-up assembled single-atom switches are thus in prospect.

9.
Nano Lett ; 18(2): 853-858, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29284087

RESUMO

Active plasmonic nanostructures with tunable resonances promise to enable smart materials with multiple functionalities, on-chip spectral-based imaging and low-power optoelectronic devices. A variety of tunable materials have been integrated with plasmonic structures, however, the tuning range in the visible regime has been limited to less than the line width of the resonance resulting in small on/off ratios. Here we demonstrate dynamic tuning of plasmon resonances up to 71 nm through multiple cycles by incorporating photochromic molecules into plasmonic nanopatch antennas. Exposure to ultraviolet (UV) light switches the molecules into a photoactive state enabling dynamic control with on/off ratios up to 9.2 dB and a tuning figure of merit up to 1.43, defined as the ratio between the spectral shift and the initial line width of the plasmonic resonance. Moreover, the physical mechanisms underlying the large spectral shifts are elucidated by studying over 40 individual nanoantennas with fundamental resonances from 550 to 720 nm revealing good agreement with finite-element simulations.

10.
Opt Express ; 26(16): 20718-20725, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119377

RESUMO

Plasmonic structures can precisely localize electromagnetic energy to deep subwavelength regions resulting in significant field enhancement useful for efficient on-chip nonlinear generation. However, the origin of large nonlinear enhancements observed in plasmonic nanogap structures consisting of both dielectrics and metals is not fully understood. For the first time, here we probe the third harmonic generation (THG) from a variety of dielectric materials embedded in a nanogap plasmonic cavity. From comprehensive spectral analysis of the THG signal, we conclude that the nonlinear response results primarily from the dielectric spacer layer itself as opposed to the surrounding metal. We achieved a maximum enhancement factor of more than six orders of magnitude compared to a bare gold film, which represents a nonlinear conversion efficiency of 8.78 × 10-4%. We expect this new insight into the nonlinear response in ultrathin gaps between metals to be promising for on-chip nonlinear devices such as ultrafast optical switching and entangled photon sources.

11.
Nano Lett ; 17(11): 6690-6695, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28956442

RESUMO

Coherent light sources have been demonstrated based on a wide range of nanostructures, however, little effort has been devoted to probing their underlying coherence properties. Here, we report long-range spatial coherence of lattice plasmon lasers constructed from a periodic array of gold nanoparticles and a liquid gain medium at room temperature. By combining spatial and temporal interferometry, we demonstrate millimeter-scale (∼1 mm) spatial coherence and picosecond (∼2 ps) temporal coherence. The long-range spatial coherence occurs even without the presence of strong coupling with the lattice plasmon mode extending over macroscopic distances in the lasing regime. This plasmonic lasing system thus provides a platform for understanding the emergence of long-range coherence from collections of nanoscale resonators and points toward novel types of distributed lasing sources.

12.
Nano Lett ; 16(1): 270-5, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26606001

RESUMO

Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

13.
Nano Lett ; 15(1): 464-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25432015

RESUMO

We demonstrate an all-dielectric quantum electrodynamical nanowire-slab system with a single emitter that concentrates the extremely intense light at the scale of 10 × 75 nm(2). The quantum dot exhibits a record high 31-fold spontaneous decay rate enhancement, its optical saturation and blinking are strongly suppressed, and 80% of emission couples into a waveguide mode.

14.
Nano Lett ; 15(5): 3578-84, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25914964

RESUMO

Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths--critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nanocavity based on a nanopatch antenna design that has two tunable resonant modes in the visible spectrum separated by 350 nm and with line widths of ∼60 nm. The importance of utilizing two resonances simultaneously is demonstrated by integrating monolayer MoS2, a two-dimensional semiconductor, into the colloidally synthesized nanocavities. We observe a 2000-fold enhancement in the PL intensity of MoS2--which has intrinsically low absorption and small quantum yield--at room temperature, enabled by the combination of tailored absorption enhancement at the first harmonic and PL quantum-yield enhancement at the fundamental resonance.

15.
Nano Lett ; 14(8): 4797-802, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25020029

RESUMO

The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.

16.
Science ; 382(6668): 264-265, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856583

RESUMO

Precise charge dynamics could help to improve the operation of solar cells and sensors.

17.
ACS Nano ; 17(23): 24022-24032, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014847

RESUMO

The nonlinear conversion of photons from lower to higher energy is important for a wide range of applications, from quantum communications and optoelectronics to solar energy conversion and medicine. Triplet-triplet annihilation upconversion (TTA UC), which utilizes an absorber/emitter molecular pair, is a promising tool for upconversion applications requiring low intensity light such as photovoltaics, photocatalysis, and bioimaging. Despite demonstrations of efficient TTA UC in solution, practical applications have proven difficult, as thin films retard the necessary energy transfer steps and result in low emission yields. In this work, TTA UC emission from a thin film is greatly enhanced through integration into plasmonic nanogap cavities consisting of a silver mirror, a nanometer-scale polymer spacer containing a TTA molecular pair, and colloidally synthesized silver nanocubes. Mechanistic studies performed by varying the nanocube side length (45-150 nm) to tune the nanogap cavity resonance paired with simulations reveal absorption rate enhancement to be the primary operative mechanism in overall TTA UC emission enhancement. This absorption enhancement decreases the TTA UC threshold intensity by an order of magnitude and allows TTA UC emission to be excited with light up to 120 nm redder than the usable wavelength range for the control samples. Further, combined nanogap cavities composed of two distinct nanocube sizes result in surfaces which simultaneously enhance the absorption rate and emission rate. These dual-size nanogap cavities result in 45-fold TTA UC emission enhancement. In total, these studies present TTA UC emission enhancement, illustrate how the usable portion of the spectrum can be expanded for a given sensitizer-emitter pair, and develop both mechanistic understanding and design rules for TTA UC emission enhancement by plasmonic nanostructures.

18.
Adv Mater ; 35(34): e2107986, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35332957

RESUMO

Fluorescence-based biosensors have widely been used in the life-sciences and biomedical applications due to their low limit of detection and a diverse selection of fluorophores that enable simultaneous measurements of multiple biomarkers. Recent research effort has been made to implement fluorescent biosensors into the exploding field of point-of-care testing (POCT), which uses cost-effective strategies for rapid and affordable diagnostic testing. However, fluorescence-based assays often suffer from their feeble signal at low analyte concentrations, which often requires sophisticated, costly, and bulky instrumentation to maintain high detection sensitivity. Metal- and metal oxide-based nanostructures offer a simple solution to increase the output signal from fluorescent biosensors due to the generation of high field enhancements close to a metal or metal oxide surface, which has been shown to improve the excitation rate, quantum yield, photostability, and radiation pattern of fluorophores. This article provides an overview of existing biosensors that employ various strategies for fluorescence enhancement via nanostructures and have demonstrated the potential for use as POCT. Biosensors using nanostructures such as planar substrates, freestanding nanoparticles, and metal-dielectric-metal nanocavities are discussed with an emphasis placed on technologies that have shown promise towards POCT applications without the need for centralized laboratories.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Sistemas Automatizados de Assistência Junto ao Leito , Metais/química , Nanoestruturas/química , Corantes Fluorescentes/química , Óxidos
20.
Sci Transl Med ; 13(588)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827978

RESUMO

Ebola virus (EBOV) hemorrhagic fever outbreaks have been challenging to deter due to the lack of health care infrastructure in disease-endemic countries and a corresponding inability to diagnose and contain the disease at an early stage. EBOV vaccines and therapies have improved disease outcomes, but the advent of an affordable, easily accessed, mass-produced rapid diagnostic test (RDT) that matches the performance of more resource-intensive polymerase chain reaction (PCR) assays would be invaluable in containing future outbreaks. Here, we developed and demonstrated the performance of a new ultrasensitive point-of-care immunoassay, the EBOV D4 assay, which targets the secreted glycoprotein of EBOV. The EBOV D4 assay is 1000-fold more sensitive than the U.S. Food and Drug Administration-approved RDTs and detected EBOV infection earlier than PCR in a standard nonhuman primate model. The EBOV D4 assay is suitable for low-resource settings and may facilitate earlier detection, containment, and treatment during outbreaks of the disease.


Assuntos
Doença pelo Vírus Ebola , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Ebolavirus , Glicoproteínas , Doença pelo Vírus Ebola/diagnóstico , Imunoensaio , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA