Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(4): 577-588, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29228356

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with complex symptomology. In addition to a predisposition to tumors, children with NF1 can present with reduced muscle mass, global muscle weakness, and impaired motor skills, which can have a significant impact on quality of life. Genetic mouse models have shown a lipid storage disease phenotype may underlie muscle weakness in NF1. Herein we confirm that biopsy specimens from six individuals with NF1 similarly manifest features of a lipid storage myopathy, with marked accumulation of intramyocellular lipid, fibrosis, and mononuclear cell infiltrates. Intramyocellular lipid was also correlated with reductions in neurofibromin protein expression by western analysis. An RNASeq profile of Nf1null muscle from a muscle-specific Nf1 knockout mouse (Nf1MyoD-/-) revealed alterations in genes associated with glucose regulation and cell signaling. Comparison by lipid mass spectrometry demonstrated that Nf1null muscle specimens were enriched for long chain fatty acid (LCFA) containing neutral lipids, such as cholesterol esters and triacylglycerides, suggesting fundamentally impaired LCFA metabolism. The subsequent generation of a limb-specific Nf1 knockout mouse (Nf1Prx1-/-) recapitulated all observed features of human NF1 myopathy, including lipid storage, fibrosis, and muscle weakness. Collectively, these insights led to the evaluation of a dietary intervention of reduced LCFAs, and enrichment of medium-chain fatty acids (MCFAs) with L-carnitine. Following 8-weeks of dietary treatment, Nf1Prx1-/- mice showed a 45% increase in maximal grip strength, and a 71% reduction in intramyocellular lipid staining compared with littermates fed standard chow. These data link NF1 deficiency to fundamental shifts in muscle metabolism, and provide strong proof of principal that a dietary intervention can ameliorate symptoms.


Assuntos
Doenças Musculares/dietoterapia , Neurofibromatose 1/dietoterapia , Adolescente , Adulto , Animais , Carnitina/uso terapêutico , Criança , Pré-Escolar , Ácidos Graxos/uso terapêutico , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Debilidade Muscular/patologia , Debilidade Muscular/terapia , Doenças Musculares/genética , Doenças Musculares/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Qualidade de Vida , Adulto Jovem
2.
Calcif Tissue Int ; 106(2): 172-179, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578632

RESUMO

Clinical concerns have been raised over prior exposure to bisphosphonates impairing fracture healing. To model this, groups of male Wistar rats were assigned to saline control or treatment groups receiving 0.15 mg/kg (low dose), 0.5 mg/kg (medium dose), and 5 mg/kg (high dose) Pamidronate (PAM) twice weekly for 4 weeks. At this point, closed fractures were made using an Einhorn apparatus, and bisphosphonate dosing was continued until the experimental endpoint. Specimens were analyzed at 2 and 6 weeks (N = 8 per group per time point). Twice weekly PAM dosing was found to have no effect on early soft callus remodeling at 2 weeks post fracture. At this time point, the highest dose PAM group gave significant increases in bone volume (+ 10%, p < 0.05), bone mineral content (+ 30%, p < 0.01), and bone mineral density (+ 10%, p < 0.01). This PAM dosing regimen showed more substantive effects on hard callus at 6 weeks post fracture, with PAM treatment groups showing + 46-79% increased bone volume. Dynamic bone labeling showed reduced calcein signal in the PAM-treated calluses (38-63%, p < 0.01) and reduced MAR (32-49%, p < 0.01), suggesting a compensatory reduction in bone anabolism. These data support the concept that bisphosphonates lead to profound decreases in bone turnover in fracture repair, however, this does not affect soft callus remodeling.


Assuntos
Calo Ósseo/efeitos dos fármacos , Fraturas do Fêmur/patologia , Fraturas Fechadas/patologia , Osteogênese/efeitos dos fármacos , Pamidronato/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/farmacologia , Remodelação Óssea/efeitos dos fármacos , Calo Ósseo/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Fraturas do Fêmur/tratamento farmacológico , Consolidação da Fratura/efeitos dos fármacos , Fraturas Fechadas/tratamento farmacológico , Masculino , Tamanho do Órgão/efeitos dos fármacos , Osteogênese Imperfeita/patologia , Pamidronato/administração & dosagem , Ratos , Ratos Wistar , Fatores de Tempo
3.
Mol Genet Metab ; 123(4): 518-525, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477258

RESUMO

Neurofibromatosis Type 1 (NF1) is a common autosomal dominant genetic disorder While NF1 is primarily associated with predisposition for tumor formation, muscle weakness has emerged as having a significant impact on quality of life. NF1 inactivation is linked with a canonical upregulation Ras-MEK-ERK signaling. This in this study we tested the capacity of the small molecule MEK inhibitor PD0325901 to influence the intramyocellular lipid accumulation associated with NF1 deficiency. Established murine models of tissue specific Nf1 deletion in skeletal muscle (Nf1MyoD-/-) and limb mesenchyme (Nf1Prx1-/-) were tested. Developmental PD0325901 dosing of dams pregnant with Nf1MyoD-/- progeny rescued the phenotype of day 3 pups including body weight and lipid accumulation by Oil Red O staining. In contrast, PD0325901 treatment of 4 week old Nf1Prx1-/- mice for 8 weeks had no impact on body weight, muscle wet weight, activity, or intramyocellular lipid. Examination of day 3 Nf1Prx1-/- pups showed differences between the two tissue-specific knockout strains, with lipid staining greatest in Nf1MyoD-/- mice, and fibrosis higher in Nf1Prx1-/- mice. These data show that a MEK/ERK dependent mechanism underlies NF1 muscle metabolism during development. However, crosstalk from Nf1-deficient non-muscle mesenchymal cells may impact upon muscle metabolism and fibrosis in neonatal and mature myofibers.


Assuntos
Benzamidas/farmacologia , Difenilamina/análogos & derivados , Extremidades/patologia , Músculo Esquelético/patologia , Doenças Musculares/prevenção & controle , Neurofibromatose 1/fisiopatologia , Neurofibromina 1/fisiologia , Animais , Animais Recém-Nascidos , Difenilamina/farmacologia , Feminino , Proteínas de Homeodomínio/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Proteína MyoD/fisiologia , Transdução de Sinais , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo
4.
Calcif Tissue Int ; 102(1): 105-116, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105022

RESUMO

Wnt antagonist Dkk1 is a negative regulator of bone formation and Dkk1 +/- heterozygous mice display a high bone mass phenotype. Complete loss of Dkk1 function disrupts embryonic head development. Homozygous Dkk1 -/- mice that were heterozygous for Wnt3 loss of function mutation (termed Dkk1 KO) are viable and allowed studying the effects of homozygous inactivation of Dkk1 on bone formation. Dkk1 KO mice showed a high bone mass phenotype exceeding that of heterozygous mice as well as a high incidence of polydactyly and kinky tails. Whole body bone density was increased in the Dkk1 KO mice as shown by longitudinal dual-energy X-ray absorptiometry. MicroCT analysis of the distal femur revealed up to 3-fold increases in trabecular bone volume and up to 2-fold increases in the vertebrae, compared to wild type controls. Cortical bone was increased in both the tibiae and vertebrae, which correlated with increased strength in tibial 4-point bending and vertebral compression tests. Dynamic histomorphometry identified increased bone formation as the mechanism underlying the high bone mass phenotype in Dkk1 KO mice, with no changes in bone resorption. Mice featuring only Wnt3 heterozygosity showed no evident bone phenotype. Our findings highlight a critical role for Dkk1 in the regulation of bone formation and a gene dose-dependent response to loss of DKK1 function. Targeting Dkk1 to enhance bone formation offers therapeutic potential for osteoporosis.


Assuntos
Densidade Óssea/fisiologia , Osso e Ossos/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteogênese/genética , Animais , Doenças Ósseas Metabólicas/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/patologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Knockout , Fenótipo
5.
Clin Orthop Relat Res ; 476(6): 1311-1323, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29698291

RESUMO

BACKGROUND: Infection of open fractures remains a significant cause of morbidity and mortality to patients worldwide. Early administration of prophylactic antibiotics is known to improve outcomes; however, increasing concern regarding antimicrobial resistance makes finding new compounds for use in such cases a pressing area for further research. CSA-90, a synthetic peptidomimetic compound, has previously demonstrated promising antimicrobial action against Staphylococcus aureus in rat open fractures. However, its efficacy against antibiotic-resistant microorganisms, its potential as a therapeutic agent in addition to its prophylactic effects, and its proosteogenic properties all require further investigation. QUESTIONS/PURPOSES: (1) Does prophylactic treatment with CSA-90 reduce infection rates in a rat open fracture model inoculated with S aureus, methicillin-resistant S aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis (MRSE) as measured by survival, radiographic union, and deep tissue swab cultures? (2) Does CSA-90 reduce infection rates when administered later in the management of an open fracture as measured by survival, radiographic union, and deep tissue swab cultures? (3) Does CSA-90 demonstrate a synergistic proosteogenic effect with bone morphogenetic protein 2 (BMP-2) in a noninfected rat ectopic bone formation assay as assessed by micro-CT bone volume measurement? (4) Can CSA-90 elute and retain its antimicrobial efficacy in vitro when delivered using clinically relevant agents measured using a Kirby-Bauer disc diffusion assay? METHODS: All in vivo studies were approved by the local animal ethics committee. In the open fracture studies, 12-week-old male Wistar rats underwent open midshaft femoral fractures stabilized with a 1.1-mm Kirschner wire and 10 µg BMP-2 ± 500 µg CSA-90 was applied to the fracture site using a collagen sponge along with 1 x 10 colony-forming units of bacteria (S aureus/MRSA/MRSE; n = 10 per group). In the delayed treatment study, débridement and treatment with 500 µg CSA-90 were performed at Day 1 and Day 5 after injury and bacterial insult (S aureus). All animals were reviewed daily for signs of local infection and/or sepsis. An independent, blinded veterinarian reviewed twice-weekly radiographs, and rats showing osteolysis and/or declining overall health were culled at his instruction. The primary outcome of both fracture studies was fracture infection, incorporating survival, radiographic union, and deep tissue swab cultures. For the ectopic bone formation assay, 0 to 10 µg BMP-2 and 0 to 500 µg CSA-90 were delivered on a collagen sponge into bilateral quadriceps muscle pouches of 8-week-old rats (n = 10 per group). Micro-CT quantification of bone volume and descriptive histologic analysis were performed for all in vivo studies. Modified Kirby-Bauer disc diffusion assays were used to quantify antimicrobial activity in vitro using four different delivery methods, including bone cement. RESULTS: Infection was observed in none of the MRSA inoculated open fractures treated with CSA-90 with 10 of 10 deep tissue swab cultures negative at the time of cull. Median survival was 43 days (range, 11-43 days) in the treated group versus 11 days (range, 8-11 days) in the untreated MRSA inoculated group (p < 0.001). However, delayed débridement and treatment of open fractures with CSA-90 at either Day 1 or Day 5 did not prevent infection, resulting in early culls by Day 21 with positive swab cultures (10 of 10 for each time point). Maximal ectopic bone formation was achieved with 500 µg CSA-90 and 10 µg BMP-2 (mean volume, 9.58 mm; SD, 7.83), creating larger bone nodules than formed with 250 µg CSA-90 and 10 µg BMP-2 (mean volume, 1.7 mm; SD, 1.07; p < 0.001). Disc diffusion assays showed that CSA-90 could successfully elute from four potential delivery agents including calcium sulphate (mean zone of inhibition, 11.35 mm; SD, 0.957) and bone cement (mean, 4.67 mm; SD, 0.516). CONCLUSIONS: CSA-90 shows antimicrobial action against antibiotic-resistant Staphylococcal strains in vitro and in an in vivo model of open fracture infection. CLINICAL RELEVANCE: The antimicrobial properties of CSA-90 combined with further evidence of its proosteogenic potential make it a promising compound to develop further for orthopaedic applications.


Assuntos
Antibioticoprofilaxia/métodos , Fraturas do Fêmur/tratamento farmacológico , Fraturas Expostas/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pregnanos/farmacologia , Propilaminas/farmacologia , Infecções Estafilocócicas/prevenção & controle , Animais , Modelos Animais de Doenças , Fraturas do Fêmur/microbiologia , Fraturas Expostas/microbiologia , Masculino , Ratos , Ratos Wistar , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos
6.
Calcif Tissue Int ; 101(2): 217-228, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28391431

RESUMO

Open fractures remain a challenge in orthopedics. Current strategies to intervene are often inadequate, particularly in severe fractures or when treatment is delayed. Sclerostin is a negative regulator of bone growth and sclerostin-neutralizing antibodies (Scl-Ab) can increase bone mass and strength. The application of these antibodies to improve orthopedic repair has shown varied results, and may be dependent on the location and severity of the bony injury. We examined Scl-Ab treatment within an established rat osteotomy model with periosteal stripping analogous to open fracture repair. In one study, Scl-Ab was given 25 mg/kg bi-weekly, either from the time of fracture or from 3 weeks post-fracture up to an end-point of 12 weeks. A second study treated only delayed union open fractures that did not show radiographic union by week 6 post-fracture. Outcome measures included radiographic union, microCT analysis of bone volume and architecture, and histology. In the first study, Scl-Ab given from either 0 or 3 weeks significantly improved callus bone volume (+52%, p < 0.05 and +58%, p < 0.01) at 12 weeks, as well as strength (+48%, p < 0.05 and +70%, p < 0.05). Despite these improvements, union rate was not changed. In the second study treating only established delayed fractures, bony callus volume was similarly increased by Scl-Ab treatment; however, this did not translate to increased biomechanical strength or union improvement. Sclerostin antibody treatment has limited effects on the healing of challenging open fractures with periosteal stripping, but shows the greatest benefits on callus size and strength with earlier intervention.


Assuntos
Anticorpos/farmacologia , Densidade Óssea/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/imunologia , Calo Ósseo/patologia , Marcadores Genéticos/imunologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Modelos Animais de Doenças , Fraturas do Fêmur/tratamento farmacológico , Fraturas do Fêmur/patologia , Fêmur/efeitos dos fármacos , Fêmur/patologia , Consolidação da Fratura/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Osteotomia/métodos , Ratos
7.
Dev Growth Differ ; 57(1): 10-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25389084

RESUMO

Mouse models incorporating inducible Cre-ERT2/LoxP recombination coupled with sensitive fluorescent reporter lines are being increasingly used to track cell lineages in vivo. In this study we use two inducible reporter strains, Ai9iCol2a1 (Ai9×Col2a1-creERT2) to track contribution of chondrogenic progenitors during bone regeneration in a closed fracture model and Ai9i UBC (Ai9×UBC-creERT2) to examine methods for inducing localized recombination. By comparing with Ai9 littermate controls as well as inducible reporter mice not dosed with tamoxifen, we revealed significant leakiness of the CreERT2 system, particularly in the bone marrow of both lines. These studies highlight the challenges associated with highly sensitive reporters that may be activated without induction in tissues where the CreERT2 fusion is expressed. Examination of the growth plate in the Ai9iCol2a1 strain showed cells of the osteochondral lineage (cell co-staining with chondrocyte and osteoblast markers) labeled with the tdTom reporter. However, no such labeling was noted in healing fractures of Ai9iCol2a1 mice. Attempts to label a single limb using intramuscular injection of 4-hydroxytamoxifen in the Ai9i UBC strain resulted in complete labeling of the entire animal, comparable to intraperitoneal injection. While a challenge to interpret, these data are nonetheless informative regarding the limitations of these inducible reporter models, and justify caution and expansive controls in future studies using such models.


Assuntos
Rastreamento de Células/métodos , Condrócitos/metabolismo , Consolidação da Fratura/fisiologia , Fraturas Ósseas/metabolismo , Genes Reporter , Osteoblastos/metabolismo , Animais , Condrócitos/patologia , Feminino , Fraturas Ósseas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/patologia
8.
Int Orthop ; 38(7): 1527-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24389948

RESUMO

PURPOSE: Legg-Calve-Perthes disease is a paediatric condition encompassing idiopathic osteonecrosis of the femoral head (ONFH). Preventing collapse and the need for subsequent joint replacement remains the major goal of clinical management. This exploratory study utilises a porcine model of surgically induced ONFH. METHODS: rhBMP-2 with and without zoledronic acid (ZA) was delivered by intra-osseous injection in the phase-transitioning sucrose acetate isobutyrate (SAIB) in an attempt to prevent femoral head collapse. Epiphyseal quotient (EQ) at eight weeks post-surgery was the primary outcome measure. Heterotopic ossification in the joint capsule and bisphosphonate retention in the femoral head were key secondary outcomes. RESULTS: Femoral heads with ONFH and no treatment all collapsed (3/3, EQ < 0.4, P < 0.05 compared to no ONFH). Local delivery of rhBMP-2/SAIB into the femoral head prevented collapse by EQ measurement one of four samples; however, this specimen still showed evidence of significant collapse. In contrast, the combination of local rhBMP-2 and local ZA prevented collapse in two of four samples. Confocal fluorescence microscopy showed locally dosed bisphosphonate entered and was retained in the femoral head. This group also showed strong Calcein signal, indicating new bone formation. Treatment with rhBMP-2 was associated with a limited amount of heterotrophic ossification in the joint capsules in some specimens. CONCLUSIONS: Operators reported SAIB to be an efficient way to deliver rhBMP-2 to the femoral head. These data suggest that rhBMP-2 is ineffective for preventing femoral head collapse without the addition of bisphosphonate. Further research will be required to validate the clinical efficacy of a combined local rhBMP-2/bisphosphonate approach.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Proteína Morfogenética Óssea 2/administração & dosagem , Difosfonatos/administração & dosagem , Necrose da Cabeça do Fêmur/prevenção & controle , Imidazóis/administração & dosagem , Doença de Legg-Calve-Perthes/tratamento farmacológico , Fator de Crescimento Transformador beta/administração & dosagem , Animais , Portadores de Fármacos , Necrose da Cabeça do Fêmur/etiologia , Injeções , Doença de Legg-Calve-Perthes/complicações , Projetos Piloto , Proteínas Recombinantes/administração & dosagem , Sacarose/análogos & derivados , Suínos , Ácido Zoledrônico
9.
Eur Cell Mater ; 25: 190-203, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23444237

RESUMO

We describe two studies encompassing the iterative refinement of a polymer-based rhBMP-2 delivery system for bone tissue engineering. Firstly, we compared the bone-forming capacity of porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds produced by thermally induced phase separation (TIPS) with non-porous solvent cast poly(D,L-lactic acid) (PDLLA) used previously. Secondly, we examined the potential synergy between rhBMP-2 and local bisphosphonate in the PLGA scaffold system. In vivo ectopic bone formation studies were performed in C57BL6/J mice. Polymer scaffolds containing 0, 5, 10 or 20 µg rhBMP-2 were inserted into the dorsal musculature. At all rhBMP-2 doses, porous PLGA produced significantly higher bone volume (BV, mm3) than the solid PDLLA scaffolds. Next, porous PLGA scaffolds containing 10 µg rhBMP-2 ± 0.2, or 2 µg zoledronic acid (ZA) were inserted into the hind-limb musculature. Co-delivery of local 10 µg rhBMP-2/2 µg ZA significantly augmented bone formation compared with rhBMP-2 alone (400 % BV increase, p < 0.01). Hydroxyapatite microparticle (HAp) addition (2 % w/w) to the 10 µg rhBMP-2/0.2 µg ZA group increased BV (200 %, p < 0.01). We propose that this was due to controlled ZA release of HAp-bound ZA. Consistent with this, elution analyses showed that HAp addition did not alter the rhBMP-2 elution, but delayed ZA release. Moreover, 2 % w/w HAp addition reduced the scaffold's compressive properties, but did not alter ease of surgical handling. In summary, our data show that refinement of the polymer selection and scaffold fabrication can enhance rhBMP-2 induced bone formation in our bone tissue engineering implant, and this can be further optimised by the local co-delivery of ZA/HAp.


Assuntos
Substitutos Ósseos/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Proteína Morfogenética Óssea 2/administração & dosagem , Regeneração Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Força Compressiva , Difosfonatos/administração & dosagem , Durapatita/administração & dosagem , Feminino , Imidazóis/administração & dosagem , Implantes Experimentais , Ácido Láctico/química , Camundongos , Camundongos Endogâmicos C57BL , Poliésteres , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Porosidade , Radiografia , Proteínas Recombinantes/administração & dosagem , Fator de Crescimento Transformador beta/administração & dosagem , Ácido Zoledrônico
10.
BMC Musculoskelet Disord ; 12: 288, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22192089

RESUMO

BACKGROUND: Bone repair is dependent on the presence of osteocompetent progenitors that are able to differentiate and generate new bone. Muscle is found in close association with orthopaedic injury, however its capacity to make a cellular contribution to bone repair remains ambiguous. We hypothesized that myogenic cells of the MyoD-lineage are able to contribute to bone repair. METHODS: We employed a MyoD-Cre+:Z/AP+ conditional reporter mouse in which all cells of the MyoD-lineage are permanently labeled with a human alkaline phosphatase (hAP) reporter. We tracked the contribution of MyoD-lineage cells in mouse models of tibial bone healing. RESULTS: In the absence of musculoskeletal trauma, MyoD-expressing cells are limited to skeletal muscle and the presence of reporter-positive cells in non-muscle tissues is negligible. In a closed tibial fracture model, there was no significant contribution of hAP+ cells to the healing callus. In contrast, open tibial fractures featuring periosteal stripping and muscle fenestration had up to 50% of hAP+ cells detected in the open fracture callus. At early stages of repair, many hAP+ cells exhibited a chondrocyte morphology, with lesser numbers of osteoblast-like hAP+ cells present at the later stages. Serial sections stained for hAP and type II and type I collagen showed that MyoD-lineage cells were surrounded by cartilaginous or bony matrix, suggestive of a functional role in the repair process. To exclude the prospect that osteoprogenitors spontaneously express MyoD during bone repair, we created a metaphyseal drill hole defect in the tibia. No hAP+ staining was observed in this model suggesting that the expression of MyoD is not a normal event for endogenous osteoprogenitors. CONCLUSIONS: These data document for the first time that muscle cells can play a significant secondary role in bone repair and this knowledge may lead to important translational applications in orthopaedic surgery. Please see related article: http://www.biomedcentral.com/1741-7015/9/136.


Assuntos
Consolidação da Fratura , Fraturas Fechadas/patologia , Fraturas Expostas/patologia , Células Satélites de Músculo Esquelético/patologia , Células-Tronco/patologia , Tíbia/patologia , Fraturas da Tíbia/patologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Linhagem da Célula , Transdiferenciação Celular , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Fraturas Fechadas/genética , Fraturas Fechadas/metabolismo , Fraturas Expostas/genética , Fraturas Expostas/metabolismo , Genes Reporter , Humanos , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína MyoD/genética , Osteoblastos/metabolismo , Osteoblastos/patologia , Regiões Promotoras Genéticas , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Tíbia/lesões , Tíbia/metabolismo , Fraturas da Tíbia/genética , Fraturas da Tíbia/metabolismo , Fatores de Tempo
11.
Eur Cell Mater ; 20: 431-41; discussion 441-2, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21181649

RESUMO

The effects of bone anabolic agents such as bone morphogenetic proteins (BMPs) have the potential to be augmented by co-treatment with an anti-catabolic such as a bisphosphonate. We hypothesised that the effects of bisphosphonates on BMP-induced bone anabolism would be dose dependent, and we aimed to test this in a small animal model. Agents were delivered locally using a biodegradable poly-D, L-lactic-acid (PDLLA) polymer delivery system. Recombinant human BMP-7 (25 µg) was tested with a range of doses of the bisphosphonate pamidronate (0.02 mg, 0.2 mg and 2 mg local PAM; 0.3 mg/kg and 3 mg/kg thrice-weekly systemic PAM) versus BMP-7 alone. Polymer pellets were surgically implanted in the hind limbs of female C57BL6/J mice (8-10 week) and ectopic bone nodules were harvested at 3 and 8 weeks post-operatively. At 3 weeks, local low dose PAM (0.02 mg) induced a 102% increase in rhBMP-7 induced bone volume (p<0.01) as measured by miroCT, and this was comparable to systemic PAM (0.3 mg/kg thrice-weekly). In contrast, local high dose PAM (2 mg) resulted in a 97% decrease in bone volume (p<0.01). Radiography and histology indicated that the polymer vehicle was still largely present at 8 weeks indicating inefficient biodegradation. This is the first study to validate the utility of local co-delivery of BMP/bisphosphonate via biodegradable polymer and supports the continued refinement of more advanced bioresorbable delivery systems for clinical applications.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Proteína Morfogenética Óssea 7/administração & dosagem , Osso e Ossos/efeitos dos fármacos , Difosfonatos/administração & dosagem , Ácido Láctico , Polímeros , Proteínas Recombinantes/administração & dosagem , Animais , Conservadores da Densidade Óssea/farmacologia , Proteína Morfogenética Óssea 7/farmacologia , Osso e Ossos/fisiologia , Portadores de Fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Pamidronato , Poliésteres , Músculo Quadríceps , Proteínas Recombinantes/farmacologia , Engenharia Tecidual
12.
BMC Musculoskelet Disord ; 11: 105, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20509926

RESUMO

BACKGROUND: Transforming growth factor-beta (TGF-beta) and bone morphogenetic proteins (BMPs) utilize parallel and related signaling pathways, however the interaction between these pathways in bone remains unclear. TGF-beta inhibition has been previously reported to promote osteogenic differentiation in vitro, suggesting it may have a capacity to augment orthopaedic repair. We have explored this concept using an approach that represents a template for the testing of agents with prospective orthopaedic applications. METHODS: The effects of BMP-2, TGF-beta1, and the TGF-beta receptor (ALK-4/5/7) inhibitor SB431542 on osteogenic differentiation were tested in the MC3T3-E1 murine pre-osteoblast cell line. Outcome measures included alkaline phosphatase staining, matrix mineralization, osteogenic gene expression (Runx2, Alp, Ocn) and phosphorylation of SMAD transcription factors. Next we examined the effects of SB431542 in two orthopaedic animal models. The first was a marrow ablation model where reaming of the femur leads to new intramedullary bone formation. In a second model, 20 microg rhBMP-2 in a polymer carrier was surgically introduced to the hind limb musculature to produce ectopic bone nodules. RESULTS: BMP-2 and SB431542 increased the expression of osteogenic markers in vitro, while TGF-beta1 decreased their expression. Both BMP-2 and SB431542 were found to stimulate pSMAD1 and we also observed a non-canonical repression of pSMAD2. In contrast, neither in vivo system was able to provide evidence of improved bone formation or repair with SB431542 treatment. In the marrow ablation model, systemic dosing with up to 10 mg/kg/day SB431542 did not significantly increase reaming-induced bone formation compared to vehicle only controls. In the ectopic bone model, local co-administration of 38 microg or 192 microg SB431542 did not increase bone formation. CONCLUSIONS: ALK-4/5/7 inhibitors can promote osteogenic differentiation in vitro, but this may not readily translate to in vivo orthopaedic applications.


Assuntos
Benzamidas/uso terapêutico , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dioxóis/uso terapêutico , Osteogênese/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/uso terapêutico , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Procedimentos Ortopédicos/métodos , Osteogênese/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Smad/metabolismo
13.
J Orthop Res ; 36(3): 930-936, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28767180

RESUMO

Tibial pseudarthrosis associated with Neurofibromatosis type 1 (NF1) is an orthopedic condition with consistently poor clinical outcomes. Using a murine model that features localized double inactivation of the Nf1 gene in an experimental tibial fracture, we tested the effects of recombinant human bone morphogenetic protein-2 (rhBMP-2) and/or the bisphosphonate zoledronic acid (ZA). Tibiae were harvested at 3 weeks for analysis, at which time there was negligible healing in un-treated control fractures (7% union). In contrast, rhBMP-2 and rhBMP-2/ZA groups showed significantly greater union (87% and 93%, p < 0.01 for both). Treatment with rhBMP-2 led to a 12-fold increase in callus bone volume and this was further increased in the rhBMP-2/ZA group. Mechanical testing of the healed rhBMP-2 and rhBMP-2/ZA fractures showed that the latter group had significantly higher mechanical strength and was restored to that of the un-fractured contralateral leg. Co-treatment with rhBMP-2/ZA also reduced fibrous tissue infiltration at the fracture site compared to rhBMP alone (p = 0.068). These data support the future clinical investigation of this combination of anabolic and anti-resorptive agents for the treatment of NF1 pseudarthrosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:930-936, 2018.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Proteína Morfogenética Óssea 2/uso terapêutico , Neurofibromatose 1/complicações , Pseudoartrose/genética , Fator de Crescimento Transformador beta/uso terapêutico , Ácido Zoledrônico/uso terapêutico , Animais , Conservadores da Densidade Óssea/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Calo Ósseo/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Feminino , Genes da Neurofibromatose 1 , Camundongos , Pseudoartrose/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Fator de Crescimento Transformador beta/farmacologia , Ácido Zoledrônico/farmacologia
14.
J Orthop Res ; 36(4): 1106-1113, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28884841

RESUMO

Neutralizing monoclonal sclerostin antibodies are effective in promoting bone formation at a systemic level and in orthopedic scenarios including closed fracture repair. In this study we examined the effects of sclerostin antibody (Scl-Ab) treatment on regenerate volume, density, and strength in a rat model of distraction osteogenesis. Surgical osteotomy was performed on 179 Sprague Dawley rats. After 1 week, rats underwent distraction for 2 weeks, followed by 6 weeks for consolidation. Two treatment groups received biweekly subcutaneous Scl-AbIII (a rodent form of Scl-Ab; 25 mg/kg), either from the start of distraction onward or restricted to the consolidation phase. These groups were compared to controls receiving saline. Measurement modalities included longitudinal DXA, ex vivo QCT, and microCT, tissue histology, and biomechanical four-point bending tests. Bone volume was increased in both Scl-Ab treatments regimens by the end of consolidation (+26-38%, p < 0.05), as assessed by microCT. This was associated with increased mineral apposition. Importantly, Scl-Ab led to increased strength in united bones, and this reached statistical significance in animals receiving Scl-Ab during consolidation only (+177%, p < 0.01, maximum load to failure). These data demonstrate that Scl-Ab treatment increases bone formation, leading to regenerates with higher bone volume and improved strength. Our data also suggest that the optimal effects of Scl-Ab treatment are achieved in the latter stages of distraction osteogenesis. These findings support further investigation into the potential clinical application of sclerostin antibody to augment bone distraction, such as limb lengthening, particularly in the prevention of refracture. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1106-1113, 2018.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Proteínas Morfogenéticas Ósseas/imunologia , Regeneração Óssea/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteogênese por Distração , Osteogênese/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fêmur/cirurgia , Masculino , Osteotomia , Ratos Sprague-Dawley , Suporte de Carga
15.
Int J Dev Biol ; 61(8-9): 531-536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29139538

RESUMO

Neurofibromatosis Type 1 (NF1) is an autosomal dominant genetic disorder that results in a variety of characteristic manifestations. Prior studies have shown reduced muscle size and global skeletal muscle weakness in children with NF1. This associated weakness can lead to significant challenges impacting on quality of life. Pre-clinical studies using a muscle-specific NF1 knockout mouse have linked this weakness to an underlying primary metabolic deficiency in the muscle. However, the neonatal lethality of this strain prevents analysis of the role of NF1 in adult muscle. In this study, we present the characterization of an inducible muscle-specific NF1 knockout strain (Nf1Pax7i f/f ) produced by cross breeding the Pax7-CreERT2 strain with the conditional Nf1flox/flox line. Tamoxifen dosing of 8-week old Nf1Pax7i f/f mice led to recombination of the floxed allele in muscle, as detected by PCR. Detailed phenotypic analysis of treated adult mice over 8 weeks revealed no changes in bodyweight or muscle weight, no histological signs of myopathy, and no functional evidence of distress or impairment. Subsequent analysis using the Ai9 Cre-dependent tdTomato reporter strain was used to analyse labelling in embryos and in adult mice. Cell tracking studies identified a lower than expected rate of integration of recombined satellite cells into adult muscle. In contrast, a high persistent contribution of embryonic cells that were Pax7+ were found in adult muscle. These findings indicate important caveats with the use of the Pax7-CreER T2 strain and highlight a need to develop new tools for investigating the function of NF1 in mature muscle.


Assuntos
Linhagem da Célula , Desenvolvimento Muscular/fisiologia , Doenças Musculares/etiologia , Neurofibromina 1/fisiologia , Fator de Transcrição PAX7/fisiologia , Transgenes/fisiologia , Animais , Feminino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Desenvolvimento Muscular/efeitos dos fármacos , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
16.
Bone ; 101: 96-103, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28461254

RESUMO

In this study, we examined the therapeutic potential of anti-Sclerostin Antibody (Scl-Ab) and bisphosphonate treatments for the bone fragility disorder Osteogenesis Imperfecta (OI). Mice with the Amish OI mutation (Col1a2 G610C mice) and control wild type littermates (WT) were treated from week 5 to week 9 of life with (1) saline (control), (2) zoledronic acid given 0.025mg/kg s.c. weekly (ZA), (3) Scl-Ab given 50mg/kg IV weekly (Scl-Ab), or (4) a combination of both (Scl-Ab/ZA). Functional outcomes were prioritized and included bone mineral density (BMD), bone microarchitecture, long bone bending strength, and vertebral compression strength. By dual-energy absorptiometry, Scl-Ab treatment alone had no effect on tibial BMD, while ZA and Scl-Ab/ZA significantly enhanced BMD by week 4 (+16% and +27% respectively, P<0.05). Scl-Ab/ZA treatment also led to increases in cortical thickness and tissue mineral density, and restored the tibial 4-point bending strength to that of control WT mice. In the spine, all treatments increased compression strength over controls, but only the combined group reached the strength of WT controls. Scl-Ab showed greater anabolic effects in the trabecular bone than in cortical bone. In summary, the Scl-Ab/ZA intervention was superior to either treatment alone in this OI mouse model, however further studies are required to establish its efficacy in other preclinical and clinical scenarios.


Assuntos
Anticorpos/uso terapêutico , Difosfonatos/uso terapêutico , Glicoproteínas/imunologia , Imidazóis/uso terapêutico , Osteogênese Imperfeita/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/imunologia , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Modelos Animais de Doenças , Feminino , Glicoproteínas/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteogênese Imperfeita/fisiopatologia , Ácido Zoledrônico
17.
J Biomed Mater Res B Appl Biomater ; 105(1): 136-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26435360

RESUMO

Cathepsin K inhibitors (CKIs) are an emerging class of drugs that are potent antagonists of osteoclastic activity. We speculated that they may be beneficial in bone tissue engineering, where a stress shielded environment can lead to rapid resorption of new bone. Most CKIs require frequent dosing, so to achieve a sustained release we manufactured polymer nanoparticles encapsulating the CKI L006235 (CKI/nP). CKI/nP and the collagen matrices that were used to deliver them were characterized by electron microscopy and fluorescent confocal microscopy, and data indicated that the particles were evenly distributed throughout the collagen. Elution studies indicated a linear release of the inhibitor from the CKI/nP, with approximately 2% of the drug being released per day. In an in vivo study, mice were implanted with collagen scaffolds containing rhBMP-2 that were loaded with the CKI/nP. Measurement of bone volume (BV) by microCT showed no significant increase with CKI/nP incorporation, and other parameters similarly showed no statistical differences. Cell culture studies confirmed the activity of the drug, even at low concentrations. These data indicate that polymer nanoparticles are an effective method for sustained drug delivery of a CKI, however, this may not be readily translatable to substantively improved bone tissue engineering outcomes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 136-144, 2017.


Assuntos
Benzamidas , Proteína Morfogenética Óssea 2 , Catepsina K/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Nanosferas/química , Osteoclastos/metabolismo , Poliglactina 910 , Tiazóis , Animais , Benzamidas/química , Benzamidas/farmacologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Humanos , Camundongos , Poliglactina 910/química , Poliglactina 910/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Tiazóis/química , Tiazóis/farmacologia
18.
J Orthop Res ; 34(2): 320-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26185108

RESUMO

ACE-011 is a bone anabolic agent generated by fusing the extracellular domain of the Activin Type 2A receptor (ActRIIA) to an IgG-Fc. The orthopedic utility of ACE-011 was investigated using a murine analogue, RAP-011. Initially, a rat closed fracture model was tested using bi-weekly (biw) 10 mg/kg RAP-011. RAP-011 significantly increased callus length and callus bone volume (BV, +43% at 6w, p < 0.01). The polar moment of inertia was calculated to be substantively increased (+80%, p < 0.01), however mechanical bending tests showed a more modest increase in maximum load to failure (+24%, p < 0.05). Histology indicated enhanced appositional bone growth, but it was hypothesized that reduced remodeling, evidenced by decreased serum CTX (-16% at 6w, p < 0.01), could be compromising bone quality in the callus. A second closed fracture study was performed to examine lower "pulse" [RAP-011(p)] and "sustained" [RAP-011(s)] regimens of biw 0.6mg/kg × 2, 0.35mg/kg × 3 and 0.18mg/kg × 2, 0.1mg/kg × 7 respectively, compared with PTH(1-34) (25 µg/kg/d) and vehicle controls. RAP-011 treatments gave modest increases in callus length and callus BV at 6w (p < 0.01), but did not achieve an increase in maximum load over vehicle. In summary, RAP-011 is effective in promoting bone formation during repair, but optimizing callus bone quality will require further investigation.


Assuntos
Fraturas Ósseas/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Fenômenos Biomecânicos , Calo Ósseo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Masculino , Ratos Wistar , Proteínas Recombinantes de Fusão/farmacologia
19.
J Bone Miner Res ; 30(6): 1022-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25484198

RESUMO

Bisphosphonates (BP) are antiresorptive drugs with a high affinity for bone. Despite the therapeutic success in treating osteoporosis and metabolic bone diseases, chronic BP usage has been associated with reduced repair of microdamage and atypical femoral fracture (AFF). The latter has a poor prognosis, and although anabolic interventions such as teriparatide (PTH(1-34) ) have been suggested as treatment options, there is a limited evidence base in support of their efficacy. Because PTH(1-34) acts to increase bone turnover, we hypothesized that it may be able to increase BP in turnover in the skeleton, which, in turn, may improve bone healing. To test this, we employed a mixture of fluorescent Alexa647-labelled pamidronate (Pam) and radiolabeled (14) C-ZA (zoledronic acid). These traceable BPs were dosed to Wistar rats in models of normal growth and closed fracture repair. Rats were cotreated with saline or 25 µg/kg/d PTH(1-34) , and the effects on BP liberation and bone healing were examined by X-ray, micro-CT, autoradiography, and fluorescent confocal microscopy. Consistent with increased BP remobilization with PTH(1-34) , there was a significant decrease in fluorescence in both the long bones and in the fracture callus in treated animals compared with controls. This was further confirmed by autoradiography for (14) C-ZA. In this model of acute BP treatment, callus bone volume (BV) was significantly increased in fractured limbs, and although we noted significant decreases in callus-bound BP with PTH(1-34) , these were not sufficient to alter this BV. However, increased intracellular BP was noted in resorbing osteoclasts, confirming that, in principle, PTH(1-34) increases bone turnover as well as BP turnover.


Assuntos
Difosfonatos , Fraturas do Fêmur , Consolidação da Fratura/efeitos dos fármacos , Imidazóis , Hormônio Paratireóideo , Animais , Isótopos de Carbono/farmacocinética , Isótopos de Carbono/farmacologia , Difosfonatos/farmacocinética , Difosfonatos/farmacologia , Fraturas do Fêmur/tratamento farmacológico , Fraturas do Fêmur/metabolismo , Imidazóis/farmacocinética , Imidazóis/farmacologia , Marcação por Isótopo , Masculino , Pamidronato , Hormônio Paratireóideo/farmacocinética , Hormônio Paratireóideo/farmacologia , Ratos , Ratos Wistar , Ácido Zoledrônico
20.
Bone ; 81: 53-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26141839

RESUMO

To better understand the relative contributions of mesenchymal and endothelial progenitor cells to rhBMP-2 induced bone formation, we examined the distribution of lineage-labeled cells in Tie2-Cre:Ai9 and αSMA-creERT2:Col2.3-GFP:Ai9 reporter mice. Established orthopedic models of ectopic bone formation in the hind limb and spine fusion were employed. Tie2-lineage cells were found extensively in the ectopic bone and spine fusion masses, but co-staining was only seen with tartrate-resistant acid phosphatase (TRAP) activity (osteoclasts) and CD31 immunohistochemistry (vascular endothelial cells), and not alkaline phosphatase (AP) activity (osteoblasts). To further confirm the lack of a functional contribution of Tie2-lineage cells to BMP-induced bone, we developed conditional knockout mice where Tie2-lineage cells are rendered null for key bone transcription factor osterix (Tie2-cre:Osx(fx/fx) mice). Conditional knockout mice showed no difference in BMP-induced bone formation compared to littermate controls. Pulse labeling of mesenchymal cells with Tamoxifen in mice undergoing spine fusion revealed that αSMA-lineage cells contributed to the osteoblastic lineage (Col2.3-GFP), but not to endothelial cells or osteoclast populations. These data indicate that the αSMA+ and Tie2+ progenitor lineages make distinct cellular contributions to bone formation, angiogenesis, and resorption/remodeling.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Linhagem da Célula/fisiologia , Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese/fisiologia , Animais , Proteína Morfogenética Óssea 2/farmacologia , Humanos , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Células-Tronco/citologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA