Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 107(26): 262501, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22243152

RESUMO

The (2)H(e,e'p)n cross section at a momentum transfer of 3.5 (GeV/c)(2) was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle θ(nq) and to extract missing momentum distributions for fixed values of θ(nq) up to 0.55 GeV/c. In the region of 35°≤θ(nq)≤45° recent calculations, which predict that final-state interactions are small, agree reasonably well with the experimental data. Therefore, these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electrodisintegration.

2.
J Environ Radioact ; 237: 106715, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34371240

RESUMO

Measurement of radioactive gas seepage from an underground nuclear explosion is one of the primary methods to confirm whether an event was nuclear in nature. Radioactive noble gas indicators that are commonly targeted by such measurements (e.g. 133Xe, 37Ar) have half-lives of 35 days or less. Argon-39, an activation product similar to 37Ar, is produced by the interaction between neutrons and potassium in the surrounding geology and has a half-life of 269 years. Measurements taken at three sites near three historic underground nuclear test locations at the Nevada National Security Site have all shown highly elevated levels of 39Ar in soil gas decades after the test events. Elevated levels of 39Ar were also detected in atmospheric air collected near two of these sites, and outside the entrance of the one tunnel site. These measurements demonstrate that 39Ar has the potential to be a long-term signature of an underground nuclear event which can be reliably detected at the surface or in the shallow subsurface. This radionuclide detection of an underground nuclear event decades after the event takes place is in contrast to the commonly held assumption that detecting underground nuclear events via radionuclides at the surface needs to be done in a matter of months. Depending upon what further studies show about the robustness of this signature in a variety of geological settings, it may in fact be easy to detect underground nuclear events at the surface for a very long time post-detonation.


Assuntos
Monitoramento de Radiação , Argônio/análise , Explosões , Radioisótopos/análise
3.
J Environ Radioact ; 228: 106513, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360017

RESUMO

While radioisotopes of noble gases are known to be indicators of underground nuclear explosions (UNE), McIntyre et al. (2017) was the first to report the presence of 39Ar in shallow soil gas in association with a decades old UNE. While this finding hinted at the potential application of 39Ar to be used as an indicator of a UNE, doing so would also require an understanding of the natural concentrations of 39Ar present in soil gas. Without knowing the expected range and variability of naturally occurring concentrations of 39Ar, it is difficult to determine what measured concentrations would be indicative of an elevated concentration. This paper presents results from 16 soil gas samples and three atmospheric air samples collected from various locations across the western United States. Shallow soil gas samples were collected into self-contained underwater breathing apparatus (SCUBA) tanks using a custom-built soil gas sampling system and then processed and analyzed for 39Ar. The measured concentrations of 39Ar varied from atmospheric air concentrations to about 3.5 times atmospheric air concentrations (58 mBq/m3). The results presented here represent the first measurements of natural background 39Ar concentrations in shallow soil gas. This data will be necessary if 39Ar is to be used as an indicator of UNE.


Assuntos
Argônio , Radiação de Fundo , Monitoramento de Radiação , Radioisótopos , Poluentes Radioativos do Solo/análise , Argônio/análise , Radioisótopos/análise , Solo
4.
J Environ Radioact ; 208-209: 106047, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31526956

RESUMO

As part of an underground gas migration study, two radioactive noble gases (37Ar and 127Xe) and two stable tracer gases (SF6 and PFDMCH) were injected into a historic nuclear explosion test chimney and allowed to migrate naturally. The purpose of this experiment was to provide a bounding case (natural transport) for the flow of radioactive noble gases following an underground nuclear explosion. To accomplish this, soil gas samples were collected from a series of boreholes and a range of depths from the shallow subsurface (3 m) to deeper levels (~160 m) over a period of eleven months. These samples have provided insights into the development and evolution of the subsurface plume and constrained the relative migration rates of the radioactive and stable gas species in the case when the driving pressure from the cavity is low. Analysis of the samples concluded that the stable tracer SF6 was consistently enriched in the subsurface samples relative to the radiotracer 127Xe, but the ratios of SF6 and 37Ar remained similar throughout the samples.


Assuntos
Gases Nobres/análise , Armas Nucleares , Monitoramento de Radiação , Radioatividade , Explosões , Nevada , Medidas de Segurança
5.
J Environ Radioact ; 178-179: 28-35, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28755564

RESUMO

Pacific Northwest National Laboratory reports on the detection of 39Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37Ar and 85Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39Ar from the fission product 85Kr. Proportional counters are currently used for high-sensitivity measurement of 37Ar and 39Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85Kr can be mistaken for that of 39Ar, and the presence of either isotope increases the measurement background level for the measurement of 37Ar. Measured values for the 39Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion.


Assuntos
Argônio/análise , Armas Nucleares , Monitoramento de Radiação , Poluentes Radioativos/análise , Nevada
6.
Appl Radiat Isot ; 110: 174-182, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26807839

RESUMO

We present a new procedure for configuring the Nuisance-rejection Spectral Comparison Ratio Anomaly Detection (N-SCRAD) method. The procedure minimizes detectable count rates of source spectra at a specified false positive rate using simulated annealing. We also present a new method for correcting the estimates of background variability used in N-SCRAD to current conditions of the total count rate. The correction lowers detection thresholds for a specified false positive rate, enabling greater sensitivity to targets.

7.
Phys Rev Lett ; 95(14): 142002, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16241646

RESUMO

We present the first measurement of the Q2 dependence of the neutron spin structure function g2(n) at five kinematic points covering 0.57 (GeV/c)2 < or = Q2 < or = 1.34 (GeV/c)2 at x approximately = 0.2. Though the naive quark-parton model predicts g2 = 0, nonzero values occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses, or orbital angular momentum. When scattering from a noninteracting quark, g2(n) can be predicted using next-to-leading order fits to world data for g1(n). Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g1(n) are consistent with next-to-leading order fits to world data.

8.
Phys Rev Lett ; 86(14): 2963-6, 2001 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11290083

RESUMO

High-precision 1H(e,e'p)pi(0) measurements at Q2 = 0.126 (GeV/c)2 are reported, which allow the determination of quadrupole amplitudes in the gamma*N-->Delta transition; they simultaneously test the reliability of electroproduction models. The derived quadrupole-to-dipole ( I = 3/2) amplitude ratios, R(SM) = (-6.5+/-0.2(stat+sys)+/-2.5(mod))% and R(EM) = (-2.1+/-0.2(stat+sys)+/-2.0(mod))%, are dominated by model error. Previous R(SM) and R(EM) results should be reconsidered after the model uncertainties associated with the method of their extraction are taken into account.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA