Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunogenetics ; 66(1): 53-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24253731

RESUMO

The major histocompatibility complex (MHC) is a dynamic genomic region with an essential role in the adaptive immunity of jawed vertebrates. The evolution of the MHC has been dominated by gene duplication and gene loss, commonly known as the birth-and-death process. Evolutionary studies of the MHC have mostly focused on model species. However, the investigation of this region in non-avian reptiles is still in its infancy. To provide insights into the evolutionary mechanisms that have shaped the diversity of this region in the Order Crocodylia, we investigated MHC class I exon 3, intron 3, and exon 4 across 20 species of the families Alligatoridae and Crocodilidae. We generated 124 DNA sequences and identified 31 putative functional variants as well as 14 null variants. Phylogenetic analyses revealed three gene groups, all of which were present in Crocodilidae but only one in Alligatoridae. Within these groups, variants generally appear to cluster at the genus or family level rather than in species-specific groups. In addition, we found variation in gene copy number and some indication of interlocus recombination. These results suggest that MHC class I in Crocodylia underwent independent events of gene duplication, particularly in Crocodilidae. These findings enhance our understanding of MHC class I evolution and provide a preliminary framework for comparative studies of other non-avian reptiles as well as diversity assessment within Crocodylia.


Assuntos
Jacarés e Crocodilos/genética , Evolução Molecular , Genes MHC Classe I/genética , Variação Genética/genética , Jacarés e Crocodilos/classificação , Animais , Clonagem Molecular , DNA Complementar/genética , Filogenia , Reação em Cadeia da Polimerase , Recombinação Genética
2.
J Virol ; 83(19): 10305-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19605486

RESUMO

Knowledge of endogenous retroviruses (ERVs) in crocodilians (Crocodylia) is limited, and their distribution among extant species is unclear. Here we analyzed the phylogenetic relationships of these retroelements in 20 species of crocodilians by studying the pro-pol gene. The results showed that crocodilian ERVs (CERVs) cluster into two major clades (CERV 1 and CERV 2). CERV 1 clustered as a sister group of the genus Gammaretrovirus, while CERV 2 clustered distantly with respect to all known ERVs. Interestingly, CERV 1 was found only in crocodiles (Crocodylidae). The data generated here could assist future studies aimed at identifying orthologous and paralogous ERVs among crocodilians.


Assuntos
Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Algoritmos , Jacarés e Crocodilos , Aminoácidos/química , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Evolução Molecular , Filogenia , Retroelementos
3.
BMC Genomics ; 10: 339, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19640266

RESUMO

BACKGROUND: Genome elucidation is now in high gear for many organisms, and whilst genetic maps have been developed for a broad array of species, surprisingly, no such maps exist for a crocodilian, or indeed any other non-avian member of the Class Reptilia. Genetic linkage maps are essential tools for the mapping and dissection of complex quantitative trait loci (QTL), and in order to permit systematic genome scans for the identification of genes affecting economically important traits in farmed crocodilians, a comprehensive genetic linage map will be necessary. RESULTS: A first-generation genetic linkage map for the saltwater crocodile (Crocodylus porosus) was constructed using 203 microsatellite markers amplified across a two-generation pedigree comprising ten full-sib families from a commercial population at Darwin Crocodile Farm, Northern Territory, Australia. Linkage analyses identified fourteen linkage groups comprising a total of 180 loci, with 23 loci remaining unlinked. Markers were ordered within linkage groups employing a heuristic approach using CRIMAP v3.0 software. The estimated female and male recombination map lengths were 1824.1 and 319.0 centimorgans (cM) respectively, revealing an uncommonly large disparity in recombination map lengths between sexes (ratio of 5.7:1). CONCLUSION: We have generated the first genetic linkage map for a crocodilian, or indeed any other non-avian reptile. The uncommonly large disparity in recombination map lengths confirms previous preliminary evidence of major differences in sex-specific recombination rates in a species that exhibits temperature-dependent sex determination (TSD). However, at this point the reason for this disparity in saltwater crocodiles remains unclear.This map will be a valuable resource for crocodilian researchers, facilitating the systematic genome scans necessary for identifying genes affecting complex traits of economic importance in the crocodile industry. In addition, since many of the markers placed on this genetic map have been evaluated in up to 18 other extant species of crocodilian, this map will be of intrinsic value to comparative mapping efforts aimed at understanding genome content and organization among crocodilians, as well as the molecular evolution of reptilian and other amniote genomes. As researchers continue to work towards elucidation of the crocodilian genome, this first generation map lays the groundwork for more detailed mapping investigations, as well as providing a valuable scaffold for future genome sequence assembly.


Assuntos
Jacarés e Crocodilos/genética , Mapeamento Cromossômico , Ligação Genética , Animais , Feminino , Genômica , Genótipo , Masculino , Repetições de Microssatélites , Northern Territory , Locos de Características Quantitativas , Recombinação Genética , Análise de Sequência de DNA
4.
PLoS One ; 9(2): e87534, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24503938

RESUMO

Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and ß evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II ß diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II ß sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85-90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia.


Assuntos
Jacarés e Crocodilos/genética , Genes MHC da Classe II , Antígenos de Histocompatibilidade Classe II/genética , Polimorfismo Genético , Seleção Genética , Animais , Teorema de Bayes , Éxons/genética , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA