Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850017

RESUMO

Epilepsy, a common neurological disorder, is featured with recurrent seizures. Its underlying pathological mechanisms remain elusive. Here, we provide evidence for loss of neogenin (NEO1), a coreceptor for multiple ligands, including netrins and bone morphological proteins, in the development of epilepsy. NEO1 is reduced in hippocampi from patients with epilepsy based on transcriptome and proteomic analyses. Neo1 knocking out (KO) in mouse brains displays elevated epileptiform spikes and seizure susceptibility. These phenotypes were undetectable in mice, with selectively depleted NEO1 in excitatory (NeuroD6-Cre+) or inhibitory (parvalbumin+) neurons, but present in mice with specific hippocampal astrocytic Neo1 KO. Additionally, neurons in hippocampal dentate gyrus, a vulnerable region in epilepsy, in mice with astrocyte-specific Neo1 KO show reductions in inhibitory synaptic vesicles and the frequency of miniature inhibitory postsynaptic current(mIPSC), but increase of the duration of miniature excitatory postsynaptic current and tonic NMDA receptor currents, suggesting impairments in both GABAergic transmission and extracellular glutamate clearance. Further proteomic and cell biological analyses of cell-surface proteins identified GLAST, a glutamate-aspartate transporter that is marked reduced in Neo1 KO astrocytes and the hippocampus. NEO1 interacts with GLAST and promotes GLAST surface distribution in astrocytes. Expressing NEO1 or GLAST in Neo1 KO astrocytes in the hippocampus abolishes the epileptic phenotype. Taken together, these results uncover an unrecognized pathway of NEO1-GLAST in hippocampal GFAP+ astrocytes, which is critical for GLAST surface distribution and function, and GABAergic transmission, unveiling NEO1 as a valuable therapeutic target to protect the brain from epilepsy.


Assuntos
Astrócitos/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Animais , Astrócitos/fisiologia , Transporte Biológico/fisiologia , Epilepsia/fisiopatologia , Epilepsia/prevenção & controle , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Convulsões/metabolismo , Transdução de Sinais , Potenciais Sinápticos/fisiologia
2.
Biol Psychiatry ; 89(6): 600-614, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183762

RESUMO

BACKGROUND: Dentate gyrus (DG), a "gate" that controls information flow into the hippocampus, plays important roles in regulating both cognitive (e.g., spatial learning and memory) and mood behaviors. Deficits in DG neurons contribute to the pathogenesis of not only neurological, but also psychiatric, disorders, such as anxiety disorder. Whereas DG's function in spatial learning and memory has been extensively investigated, its role in regulating anxiety remains elusive. METHODS: Using c-Fos to mark DG neuron activation, we identified a group of embryonic born dorsal DG (dDG) neurons, which were activated by anxiogenic stimuli and specifically express osteocalcin (Ocn)-Cre. We further investigated their functions in regulating anxiety and the underlying mechanisms by using a combination of chemogenetic, electrophysiological, and RNA-sequencing methods. RESULTS: The Ocn-Cre+ dDG neurons were highly active in response to anxiogenic environment but had lower excitability and fewer presynaptic inputs than those of Ocn-Cre- or adult born dDG neurons. Activating Ocn-Cre+ dDG neurons suppressed anxiety-like behaviors and increased adult DG neurogenesis, whereas ablating or chronically inhibiting Ocn-Cre+ dDG neurons exacerbated anxiety-like behaviors, impaired adult DG neurogenesis, and abolished activity (e.g., voluntary wheel running)-induced anxiolytic effect and adult DG neurogenesis. RNA-sequencing screening for factors induced by activation of Ocn-Cre+ dDG neurons identified BDNF, which was required for Ocn-Cre+ dDG neurons mediated antianxiety-like behaviors and adult DG neurogenesis. CONCLUSIONS: These results demonstrate critical functions of Ocn-Cre+ dDG neurons in suppressing anxiety-like behaviors but promoting adult DG neurogenesis, and both functions are likely through activation of BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Atividade Motora , Giro Denteado , Hipocampo , Neurogênese , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA