Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 177(2): 289-303, 2007 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-17438077

RESUMO

We define the dynamics of spatial and temporal reorganization of the team of proteins and lipids serving peroxisome division. The peroxisome becomes competent for division only after it acquires the complete set of matrix proteins involved in lipid metabolism. Overloading the peroxisome with matrix proteins promotes the relocation of acyl-CoA oxidase (Aox), an enzyme of fatty acid beta-oxidation, from the matrix to the membrane. The binding of Aox to Pex16p, a membrane-associated peroxin required for peroxisome biogenesis, initiates the biosynthesis of phosphatidic acid and diacylglycerol (DAG) in the membrane. The formation of these two lipids and the subsequent transbilayer movement of DAG initiate the assembly of a complex between the peroxins Pex10p and Pex19p, the dynamin-like GTPase Vps1p, and several actin cytoskeletal proteins on the peroxisomal surface. This protein team promotes membrane fission, thereby executing the terminal step of peroxisome division.


Assuntos
Acil-CoA Oxidase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Transdução de Sinais , Yarrowia/metabolismo , Aciltransferases/metabolismo , Citosol/química , Diglicerídeos/metabolismo , Retículo Endoplasmático/química , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Complexos Multiproteicos/metabolismo , Peroxissomos/química , Fosfatidato Fosfatase/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/metabolismo , Yarrowia/ultraestrutura
2.
J Cell Biol ; 168(5): 761-73, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15738267

RESUMO

We describe unusual ergosterol- and ceramide-rich (ECR) domains in the membrane of yeast peroxisomes. Several key features of these detergent-resistant domains, including the nature of their sphingolipid constituent and its unusual distribution across the membrane bilayer, clearly distinguish them from well characterized detergent-insoluble lipid rafts in the plasma membrane. A distinct set of peroxisomal proteins, including two ATPases, Pex1p and Pex6p, as well as phosphoinositide- and GTP-binding proteins, transiently associates with the cytosolic face of ECR domains. All of these proteins are essential for the fusion of the immature peroxisomal vesicles P1 and P2, the earliest intermediates in a multistep pathway leading to the formation of mature, metabolically active peroxisomes. Peroxisome fusion depends on the lateral movement of Pex1p, Pex6p, and phosphatidylinositol-4,5-bisphosphate-binding proteins from ECR domains to a detergent-soluble portion of the membrane, followed by their release to the cytosol. Our data suggest a model for the multistep reorganization of the multicomponent peroxisome fusion machinery that transiently associates with ECR domains.


Assuntos
Ceramidas/metabolismo , Ergosterol/metabolismo , Fusão de Membrana/fisiologia , Peroxissomos/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Detergentes/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fusão de Membrana/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Esfingolipídeos/metabolismo , Yarrowia/metabolismo
3.
Exp Gerontol ; 44(9): 555-71, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19539741

RESUMO

Aging is a highly complex, multifactorial process. We use the yeast Saccharomyces cerevisiae as a model to study the mechanisms of cellular aging in multicellular eukaryotes. To address the inherent complexity of aging from a systems perspective and to build an integrative model of aging process, we investigated the effect of calorie restriction (CR), a low-calorie dietary regimen, on the metabolic history of chronologically aging yeast. We examined how CR influences the age-related dynamics of changes in the intracellular levels of numerous proteins and metabolites, carbohydrate and lipid metabolism, interorganellar metabolic flow, concentration of reactive oxygen species, mitochondrial morphology, essential oxidation-reduction processes in mitochondria, mitochondrial proteome, cardiolipin in the inner mitochondrial membrane, frequency of mitochondrial DNA mutations, dynamics of mitochondrial nucleoid, susceptibility to mitochondria-controlled apoptosis, and stress resistance. Based on the comparison of the metabolic histories of long-lived CR yeast and short-lived non-CR yeast, we propose that yeast define their long-term viability by designing a diet-specific pattern of metabolism and organelle dynamics prior to reproductive maturation. Thus, our data suggest that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization they developed, in a diet-specific fashion, prior to entry into a non-proliferative state.


Assuntos
Envelhecimento/fisiologia , Restrição Calórica , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Humanos , Longevidade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA