Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36695436

RESUMO

Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25-43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1-24, the truncation at position 31 is predicted to change the structure within aa 15-31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.


Assuntos
Bacteriocinas , Lactococcus lactis , Bacteriocinas/genética , Bacteriocinas/farmacologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Antibacterianos/metabolismo
2.
J Appl Microbiol ; 133(2): 1001-1013, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35578999

RESUMO

AIMS: The aim of this study was to construct the improved pMAL expression vector to increase the efficacy of purification of small native peptides and their clear-cut separation from MBP tag. The modifications we introduced can be applied to many expression vectors. METHODS AND RESULTS: To improve the pMAL expression vector, we introduced the His6 tag and the enterokinase cleavage site (Ek) downstream from the MBP tag and Xa cleavage site on the original vector. For cloning of a desired peptide DNA, the enterokinase site contains a unique BsaBI restriction site adjacent to the original multi-cloning site. This redesigned pMAL vector was optimized for the purification of cytoplasmic (pMALc5HisEk) and periplasmic (pMALp5HisEk) peptides. The purification of native and active peptide (P) was obtained following two-step affinity chromatography. In the first step, the entire MBP-His6 -Ek-P fusion protein is purified using the Ni-NTA agarose column. This fusion protein was cleaved with active His6 tagged enterokinase. In the second step, the further purification was performed by column containing the mixture of amylose and Ni-NTA agarose resins. This removes both the MBP-His6 and His6 -enterokinase leaving pure native protein in solution. These new vectors and the two-step purification protocol were successfully applied in purification of active native small antimicrobial peptides (AMPs), lactococcin A and human ß-defensin. CONCLUSIONS: We constructed the improved pMAL expression vectors and established the pipeline and optimal conditions for their use in efficient purification of large amounts of active native small peptides. SIGNIFICANCE AND IMPACT OF THE STUDY: Choice of expression vector impacts on the efficiency of expression and purification of desired proteins. The idea of redesigning pMAL vector was driven by the need for rapid purification of larger amounts of active native AMPs. This newly improved pMAL vector, the cloning strategy, expression conditions and two-step purification protocol represent a unique simple approach which can be applied in every laboratory.


Assuntos
Peptídeos Antimicrobianos , Enteropeptidase , Cromatografia de Afinidade/métodos , Clonagem Molecular , Enteropeptidase/genética , Escherichia coli/genética , Vetores Genéticos/genética , Humanos , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sefarose/química , Sefarose/metabolismo
3.
Arch Pharm (Weinheim) ; 353(1): e1900238, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31710123

RESUMO

A small library of benzo[4,5]thieno[2,3-d]pyrimidine phthalimide and amine derivatives was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4). The phthalimide derivatives exhibited better activity than the amine precursors, with 2-(2-(3-chlorobenzyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)isoindoline-1,3-dione (compound 14) as the most effective inhibitor (IC50 = 34.17 ± 5.11 µM). The five most potent selected inhibitors did not show cytotoxicity to a greater extent on Caco-2 cells, even at a concentration of 250 µM. Compound 14 is considered as a novel representative of the rare noncompetitive DPP-4 inhibitors. Molecular docking and dynamics simulation indicated the importance of the Tyr547, Lys554, and Trp629 residues of DPP-4 in the formation of the enzyme-inhibitor complex. These observations could be potentially utilized for the rational design and optimization of novel (structurally similar, with phthalimide moiety, or different) noncompetitive DPP-4 inhibitors, which are anyway rare, but favorable in terms of the saturation of substrate competition.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ftalimidas/farmacologia , Pirimidinas/farmacologia , Células CACO-2 , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Ftalimidas/síntese química , Ftalimidas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
4.
Curr Microbiol ; 76(3): 320-328, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30684026

RESUMO

Pseudomonas aeruginosa, which is a clinically important representative of Pseudomonas spp., has been recognized as causative agent of severe nosocomial infections worldwide. An increase in antibiotic resistance of P. aeruginosa clinical strains could be attributed to their capacity to acquire resistance through mobile genetic elements such as mobile integrons that are present in one-half of multidrug-resistant P. aeruginosa strains. Mobile class 1 integrons are recognized as genetic elements involved in the rapid dissemination of multiple genes encoding for antibiotic resistance. The LexA protein is a major repressor of integrase transcription, but differences in transcription regulation among bacterial species have also been noted. In this study, the promoter activity of class 1 integron integrase gene (intI1) and its variant lacking the LexA binding site in Pseudomonas putida WCS358 wild type, ΔrpoS and ΔpsrA was analysed. The results show that the activity of the intI1 gene promoter decreased in the rpoS and psrA mutants in the stationary phase of growth compared to the wild type, which indicates the role of RpoS and PsrA proteins in the positive regulation of integrase transcription. Additionally, it was determined that the activity of the lexA gene promoter decreased in ΔrpoS and ΔpsrA, and thus, we propose that PsrA indirectly regulates the intI1 gene promoter activity through regulation of lexA gene expression in co-operation with some additional regulators. In this study, intI1 gene expression was shown to be controlled by two major stress response (SOS and RpoS) regulons, which indicates that integrase has evolved to use both systems to sense the cell status.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Integrases/genética , Pseudomonas/fisiologia , Serina Endopeptidases/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Fenômenos Fisiológicos Celulares , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Genéticos , Regiões Promotoras Genéticas , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Regulon , Deleção de Sequência , Serina Endopeptidases/metabolismo , Fator sigma/deficiência , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
5.
World J Microbiol Biotechnol ; 35(6): 85, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134456

RESUMO

Surface properties like hydrophobicity, aggregation ability, adhesion to mucosal surfaces and epithelial cells and transit time are key features for the characterization of probiotic strains. In this study, we used two Lactobacillus paracasei subsp. paracasei strains (BGNJ1-64 and BGSJ2-8) strains which were previously described with very strong aggregation capacity. The aggregation promoting factor (AggLb) expressed in these strains showed high level of binding to collagen and fibronectin, components of extracellular matrix. The working hypothesis was that strains able to aggregate have an advantage to resist in intestinal tract. So, we assessed whether these strains and their derivatives (without aggLb gene) are able to bind or not to intestinal components and we compared the transit time of each strains in mice. In that purpose parental strains (BGNJ1-64 and BGSJ2-8) and their aggregation negative derivatives (BGNJ1-641 and BGSJ2-83) were marked with double antibiotic resistance in order to be tracked in in vivo experiments in mice. Comparative analysis of binding ability of WT and aggregation negative strains to different human intestinal cell lines and mucin revealed no significant difference among them, excluding involvement of AggLb in interaction with surface of intestinal cells and mucin. In vivo experiments showed that surviving and transit time of marked strains in mice did not drastically depend on the presence of the AggLb aggregation factor.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Epiteliais/microbiologia , Intestinos/microbiologia , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Lacticaseibacillus paracasei/fisiologia , Ligação Proteica , Animais , Aderência Bacteriana/fisiologia , Células CACO-2 , Moléculas de Adesão Celular/fisiologia , Colágeno/metabolismo , Fibronectinas/metabolismo , Células HT29 , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Probióticos , Análise de Onda de Pulso , Propriedades de Superfície
6.
Biofouling ; 34(6): 685-698, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30027759

RESUMO

The ability of lactic acid bacteria to form multi-cellular aggregates via self-aggregation is regarded as an important mechanism for stress tolerance, adhesion, colonization and genetic material exchange. The novel aggLr gene encoding for the auto-aggregation promoting protein (AggLr) of Lactococcus raffinolactis BGTRK10-1 was cloned. Heterologous expression of AggLr enabled auto-aggregation, higher hydrophobicity and collagen and fibronectin binding of the carrier strains. Domain analysis and the type of aggregates formed by cells expressing AggLr confirmed that this aggregation factor belongs to the family of high molecular weight proteins that the authors propose to be called Snow-flake Forming Collagen Binding Aggregation Factors (SFCBAF). An additional feature of SFCBAF is that they are rich in threonine and lysine and are free of cysteine in all of the aggregation factors described so far. In contrast to previously discovered SFCBAF, the gene encoding for AggLr is located on the chromosome in the strain BGTRK10-1.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Moléculas de Adesão Celular/fisiologia , Lactococcus/fisiologia
7.
Appl Environ Microbiol ; 83(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842543

RESUMO

Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 produces a novel bacteriocin, lactolisterin BU, with strong antimicrobial activity against many species of Gram-positive bacteria, including important food spoilage and foodborne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and streptococci. Lactolisterin BU was extracted from the cell surface of BGBU1-4 by 2-propanol and purified to homogeneity by C18 solid-phase extraction and reversed-phase high-performance liquid chromatography. The molecular mass of the purified lactolisterin BU was 5,160.94 Da, and an internal fragment, AVSWAWQH, as determined by N-terminal sequencing, showed low-level similarity to existing antimicrobial peptides. Curing and transformation experiments revealed the presence of a corresponding bacteriocin operon on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4. Analysis of the bacteriocin operon revealed a leaderless bacteriocin of 43 amino acids that exhibited similarity to bacteriocin BHT-B (63%) from Streptococcus ratti, a bacteriocin with analogy to aureocin A.IMPORTANCE Lactolisterin BU, a broad-spectrum leaderless bacteriocin produced by L. lactis subsp. lactis bv. diacetylactis BGBU1-4, expresses strong antimicrobial activity against food spoilage and foodborne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and streptococci. Lactolisterin BU showed the highest similarity to aureocin-like bacteriocins produced by different bacteria. The operon for synthesis is located on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4, indicating possible horizontal transfer among producers.


Assuntos
Antibacterianos/isolamento & purificação , Bacteriocinas/isolamento & purificação , Bacteriocinas/farmacologia , Queijo/microbiologia , Lacticaseibacillus rhamnosus/química , Lactobacillus plantarum/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bovinos , Cromatografia Líquida de Alta Pressão , Lactobacillus plantarum/genética , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/metabolismo , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/isolamento & purificação , Lacticaseibacillus rhamnosus/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Leite/microbiologia , Óperon , Plasmídeos/genética , Plasmídeos/metabolismo , Staphylococcus aureus/efeitos dos fármacos
8.
Appl Environ Microbiol ; 82(8): 2555-2562, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896142

RESUMO

Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins.Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes,lmgA ,lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes,lmgF,lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization-time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid.


Assuntos
Bacteriocinas/química , Bacteriocinas/metabolismo , Lactococcus lactis/metabolismo , Bacteriocinas/isolamento & purificação , Vias Biossintéticas/genética , Cromossomos Bacterianos , Análise Mutacional de DNA , Genes Bacterianos , Genoma Bacteriano , Lactococcus lactis/genética , Oligopeptídeos/química , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/metabolismo , Fases de Leitura Aberta , Óperon , Plasmídeos , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray
9.
Appl Environ Microbiol ; 82(17): 5364-74, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342562

RESUMO

The Zn-dependent membrane-located protease YvjB has previously been shown to serve as a target receptor for LsbB, a class II leaderless lactococcal bacteriocin. Although yvjB is highly conserved in the genus Lactococcus, the bacteriocin appears to be active only against the subspecies L. lactis subsp. lactis Comparative analysis of the YvjB proteins of a sensitive strain (YvjBMN) and a resistant strain (YvjBMG) showed that they differ from each other in 31 positions. In this study, we applied site-directed mutagenesis and performed directed binding studies to provide biochemical evidence that LsbB interacts with the third transmembrane helix of YvjB in susceptible cells. The site-directed mutagenesis of LsbB and YvjB proteins showed that certain amino acids and the length of LsbB are responsible for the bacteriocin activity, most probably through adequate interaction of these two proteins; the essential amino acids in LsbB responsible for the activity are tryptophan (Trp(25)) and terminal alanine (Ala(30)). It was also shown that the distance between Trp(25) and terminal alanine is crucial for LsbB activity. The crucial region in YvjB for the interaction with LsbB is the beginning of the third transmembrane helix, particularly amino acids tyrosine (Tyr(356)) and alanine (Ala(353)). In vitro experiments showed that LsbB could interact with both YvjBMN and YvjBMG, but the strength of interaction is significantly less with YvjBMG In vivo experiments with immunofluorescently labeled antibody demonstrated that LsbB specifically interacts only with cells carrying YvjBMN IMPORTANCE: The antimicrobial activity of LsbB bacteriocin depends on the correct interaction with the corresponding receptor in the bacterial membrane of sensitive cells. Membrane-located bacteriocin receptors have essential primary functions, such as cell wall synthesis or sugar transport, and it seems that interaction with bacteriocins is suicidal for cells. This study showed that the C-terminal part of LsbB is crucial for the bacteriocin activity, most probably through adequate interaction with the third transmembrane domain of the YvjB receptor. The conserved Tyr(356) and Ala(353) residues of YvjB are essential for the function of this Zn-dependent membrane-located protease as a bacteriocin receptor.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Endopeptidases/metabolismo , Lactococcus lactis/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/genética , Endopeptidases/química , Endopeptidases/genética , Lactococcus lactis/química , Lactococcus lactis/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência
10.
Appl Environ Microbiol ; 81(4): 1387-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527533

RESUMO

Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-L-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11.


Assuntos
Proteínas de Bactérias/genética , Queijo/microbiologia , Lactobacillus/metabolismo , Família Multigênica , Polissacarídeos Bacterianos/biossíntese , Probióticos/metabolismo , Proteínas de Bactérias/metabolismo , Lactobacillus/genética , Fases de Leitura Aberta , Óperon , Fenótipo
11.
Anaerobe ; 26: 24-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24445155

RESUMO

The effect of exopolysaccharide (EPS) producing bifidobacteria, and the EPS derived thereof, on the modulation of immune response was evaluated. Cells isolated from gut associated lymphoid tissue (GALT) and from peripheral blood mononuclear cells (PBMC) of naïve rats were used. The proliferation and cytokine production of these immune cells in the presence of the three isogenic Bifidobacterium animalis subsp. lactis strains (A1, A1dOx and A1dOxR), as well as their purified polymers, were in vitro analysed. The cytokine pattern produced by immune cells isolated from GALT showed that most levels remained stable in the presence of the three strains or their corresponding polymers. However, in PBMC the UV-inactivated bacteria induced higher levels of the ratios IFNγ/IL-17, TNFα/IL-10 and TNFα/TGFß, and no variation in the ratio IFNγ/IL-4. Thus, B. animalis subsp. lactis strains were able to activate blood monocytes as well as T lymphocytes towards a mild inflammatory Th1 response. Furthermore, only the EPS-A1dOxR was able to stimulate a response in a similar way than its EPS-producing bacterium. Our work supports the notion that some bifidobacterial EPS could play a role in mediating the dialog of these microorganisms with the immune system. In addition, this study emphasizes the effect that the origin of the immune cells has in results obtained; this could explain the great amount of contradiction found in literature about the immunomodulation capability of EPS from probiotic bacteria.


Assuntos
Bifidobacterium/imunologia , Sangue/imunologia , Trato Gastrointestinal/imunologia , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , Ratos , Ratos Wistar
12.
mSphere ; 8(5): e0015423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37565760

RESUMO

Shigella flexneri is a facultative intracellular pathogen that causes shigellosis, a human diarrheal disease characterized by the destruction of the colonic epithelium. Novel antimicrobial compounds to treat infections are urgently needed due to the proliferation of bacterial antibiotic resistance and lack of new effective antimicrobials in the market. Our approach to find compounds that block the Shigella virulence pathway has three potential advantages: (i) resistance development should be minimized due to the lack of growth selection pressure, (ii) no resistance due to environmental antibiotic exposure should be developed since the virulence pathways are not activated outside of host infection, and (iii) the normal intestinal microbiota, which do not have the targeted virulence pathways, should be unharmed. We chose to utilize two phenotypic assays, inhibition of Shigella survival in macrophages and Shigella growth inhibition (minimum inhibitory concentration), to interrogate the 1.7 M compound screening collection subset of the GlaxoSmithKline drug discovery chemical library. A number of secondary assays on the hit compounds resulting from the primary screens were conducted, which, in combination with chemical, structural, and physical property analyses, narrowed the final hit list to 44 promising compounds for further drug discovery efforts. The rapid development of antibiotic resistance is a critical problem that has the potential of returning the world to a "pre-antibiotic" type of environment, where millions of people will die from previously treatable infections. One relatively newer approach to minimize the selection pressures for the development of resistance is to target virulence pathways. This is anticipated to eliminate any resistance selection pressure in environmental exposure to virulence-targeted antibiotics and will have the added benefit of not affecting the non-virulent microbiome. This paper describes the development and application of a simple, reproducible, and sensitive assay to interrogate an extensive chemical library in high-throughput screening format for activity against the survival of Shigella flexneri 2457T-nl in THP-1 macrophages. The ability to screen very large numbers of compounds in a reasonable time frame (~1.7 M compounds in ~8 months) distinguishes this assay as a powerful tool in further exploring new compounds with intracellular effect on S. flexneri or other pathogens with similar pathways of pathogenesis. The assay utilizes a luciferase reporter which is extremely rapid, simple, relatively inexpensive, and sensitive and possesses a broad linear range. The assay also utilized THP-1 cells that resemble primary monocytes and macrophages in morphology and differentiation properties. THP-1 cells have advantages over human primary monocytes or macrophages because they are highly plastic and their homogeneous genetic background minimizes the degree of variability in the cell phenotype (1). The intracellular and virulence-targeted selectivity of our methodology, determined via secondary screening, is an enormous advantage. Our main interest focuses on hits that are targeting virulence, and the most promising compounds with adequate physicochemical and drug metabolism and pharmacokinetic (DMPK) properties will be progressed to a suitable in vivo shigellosis model to evaluate the therapeutic potential of this approach. Additionally, compounds that act via a host-directed mechanism could be a promising source for further research given that it would allow a whole new, specific, and controlled approach to the treatment of diseases caused by some pathogenic bacteria.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Shigella flexneri , Virulência/genética , Disenteria Bacilar/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Macrófagos
13.
Int J Food Microbiol ; 337: 108935, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33152568

RESUMO

Plasmids are autonomous episomally replicating genetic elements, which carry backbone genes important for the replication and maintenance within their host, and accessory genes that might confer an advantage to their host under specific selective pressure in its ecological niche. The genome of dairy isolate L. lactis subsp. lactis bv. diacetylactis S50 was sequenced using the PacBio SMRT Cell Seq-RSII platform and revealed to possess one of the largest plasmidomes among L. lactis strains studied so far, harboring six plasmids: pS6 (5553 bp), pS7a (7308 bp), pS7b (7266 bp), pS19 (19,027 bp), pS74 (74,256 bp) and pS127 (127,002 bp) in total representing 8.9% of genome size (240,412 bp). Based on predicted plasmid replication proteins and origins it appears that all six plasmids replicate via the theta-type mechanism. The two the largest plasmids (pS74 and pS127), carry a number of genes known to be important for growth and survival in the dairy environment. These genes encode technological functions such as bacteriocin production, protein degradation, magnesium and cobalt/nickel transporters, selenium binding, exopolysaccharides (EPS) production, bacteriophage and stress resistance. Beside genes for replication, the small plasmids (pS6, pS7a, pS7a, and pS19) also carry genes important for mobilization and host survival such as type I restriction-modification (R-M) system, metal transporters, enzymes and transcriptional regulators. All plasmids in S50 strain are mobilizable, containing an oriT sequences, while pS127 is self-conjugative and allows for mobilization of the other plasmids. Small plasmids are prone to structural and segregational instability, while pS127 appeared to be segregationally stable thanks to the possession of two partition systems. The main characteristic of plasmid pS74 is EPS production, while plasmid pS127 is characterized by proteinase and multiple bacteriocins, tra locus, phage abortive systems and metal transporters. In addition to LcnA and LcnB, plasmid pS127 encodes several bacteriocin-pheromone molecules and a new bacteriocin named LcnS50, with narrow spectrum of action limited to lactococci, that has been successfully cloned and heterologously expressed.


Assuntos
Plasmídeos de Bacteriocinas/genética , Bacteriocinas/genética , Biotecnologia , Lactococcus lactis/genética , Microbiologia Industrial
14.
Microbiol Res ; 241: 126583, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919223

RESUMO

Bacteria can gain resistance to antimicrobials by acquiring and expressing genetic elements that encode resistance determinants such as efflux pumps and drug-modifying enzymes, thus hampering treatment of infection. Previously we showed that acquisition of spectinomycin resistance in a lactococcal strain was correlated with a reversible genomic inversion, but the precise location and the genes affected were unknown. Here we use long-read whole-genome sequencing to precisely define the genomic inversion and we use quantitative PCR to identify associated changes in gene expression levels. The boundaries of the inversion fall within two identical copies of a prophage-like sequence, located on the left and right replichores; this suggests possible mechanisms for inversion through homologous recombination or prophage activity. The inversion is asymmetrical in respect of the axis between the origin and terminus of the replication and modulates the expression of a SAM-dependent methyltransferase, whose heterologous expression confers resistance to spectinomycin in lactococci and that is up-regulated on exposure to spectinomycin. This study provides one of the first examples of phase variation via large-scale chromosomal inversions that confers a switch in antimicrobial resistance in bacteria and the first outside of Staphylococcus aureus.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Lactococcus/efeitos dos fármacos , Lactococcus/genética , Inversão de Sequência/genética , Espectinomicina/farmacologia , DNA Bacteriano/genética , Genoma Bacteriano/genética , Lactococcus/metabolismo , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Sequenciamento Completo do Genoma
15.
Chem Biol Interact ; 315: 108873, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31669219

RESUMO

Multiple-targeting compounds might reduce complex polypharmacy of multifactorial diseases, such as diabetes, and contribute to the greater therapeutic success. Targeting reactive oxygen species-producing enzymes, as xanthine oxidase (XO), might suppress progression of diabetes-associated vascular complications. In this study a small series of benzimidazole derivatives (1-9) was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4) and XO. One 1,3-disubstituted-benzimidazole-2-imine (5) and 1,3-thiazolo[3,2-a]benzimidazolone derivative (8) were shown as effective dual DPP-4 and XO inhibitors, with IC50 values lower than 200 µM, and predicted binding modes with both target enzymes. Both selected dual inhibitors (compounds 5 and 8) did not show cytotoxicity to a greater extent on Caco-2 cells even at concentration of 250 µM. These structures represent new non-purine scaffolds bearing two therapeutic functionalities, being DPP-4 and XO inhibitors, more favorable in comparison to DPP-4 inhibitors with DPP-4 as a single target due to pleiotropic effects of XO inhibition.


Assuntos
Benzimidazóis/farmacologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Xantina Oxidase/antagonistas & inibidores , Sítios de Ligação , Células CACO-2 , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular/métodos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
16.
Food Res Int ; 136: 109494, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846575

RESUMO

The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.


Assuntos
Queijo , Lactobacillales , Probióticos , Animais , Península Balcânica , Bovinos , Feminino , Microbiologia de Alimentos , Ovinos
17.
J Inorg Biochem ; 199: 110758, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299379

RESUMO

Anticancer activity of Pd complexes 1-5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-formylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Dano ao DNA/efeitos dos fármacos , Hidrazonas/química , Paládio/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Cristalografia por Raios X , DNA Topoisomerases Tipo I/metabolismo , Humanos , Células MCF-7 , Estrutura Molecular , Ligação Proteica , Albumina Sérica Humana/metabolismo , Relação Estrutura-Atividade , Células THP-1
18.
PLoS One ; 14(5): e0216773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075157

RESUMO

Bacteria active against multi-drug resistant pathogens, isolated by direct selection of colonies from clover silage samples, produce zones of inhibition against two Gram-negative (Klebsiella pneumoniae Ni9 and Pseudomonas aeruginosa MMA83) and two Gram-positive (Staphylococcus aureus ATCC25923 and Listeria monocytogenes ATCC19111) pathogens. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 produced the largest zones of inhibition against all four pathogens when grown in LB broth with aeration at 37°C. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 were identified as Brevibacillus laterosporus and pulsed field gel electrophoresis and extracellular protein profiles showed that three different strains (BGSP7, BGSP9 and BGSP11) were isolated. A semi-native SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) gel overlay assay showed that BGSP7 and BGSP9 produce small antimicrobial molecules of about 1.5 kDa, while BGSP11 produces antimicrobial molecules of 1.5 and 6 kDa active against S. aureus ATCC25923. Amino acid analysis of two antimicrobial molecules (1583.73 Da; from BGSP7 and 1556.31 Da; from BGSP11) revealed that they have a similar composition and differ only by virtue of the presence of a methionine which is present only in BGSP11 molecule. Genome sequencing of the three isolates revealed the presence of gene clusters associated with the production of non-ribosomally synthesized peptides (brevibacillin, bogorol, gramicidin S, plipastatin and tyrocin) and bacteriocins (laterosporulin, a lactococcin 972-like bacteriocin, as well as putative linocin M18, sactipeptide, UviB and lantipeptide-like molecules). Ultimately, the purification of a number of antimicrobial molecules from each isolate suggests that they can be considered as potent biocontrol strains that produce an arsenal of antimicrobial molecules active against Gram-positive and Gram-negative multi-resistant pathogens, fungi and insects.


Assuntos
Antibacterianos/farmacologia , Brevibacillus/isolamento & purificação , Silagem/microbiologia , Bacteriocinas/genética , Brevibacillus/efeitos dos fármacos , Brevibacillus/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Testes de Sensibilidade Microbiana
19.
Biomed Res Int ; 2018: 5657085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29789800

RESUMO

Restriction enzymes are the main defence system against foreign DNA, in charge of preserving genome integrity. Lactococcus raffinolactis BGTRK10-1 expresses LraI Type II restriction-modification enzyme, whose activity is similar to that shown for EcoRI; LraI methyltransferase protects DNA from EcoRI cleavage. The gene encoding LraI endonuclease was cloned and overexpressed in E. coli. Purified enzyme showed the highest specific activity at lower temperatures (between 13°C and 37°C) and was stable after storage at -20°C in 50% glycerol. The concentration of monovalent ions in the reaction buffer required for optimal activity of LraI restriction enzyme was 100 mM or higher. The recognition and cleavage sequence for LraI restriction enzyme was determined as 5'-G/AATTC-3', indicating that LraI restriction enzyme is an isoschizomer of EcoRI. In the reaction buffer with a lower salt concentration, LraI exhibits star activity and specifically recognizes and cuts another alternative sequence 5'-A/AATTC-3', leaving the same sticky ends on fragments as EcoRI, which makes them clonable into a linearized vector. Phylogenetic analysis based on sequence alignment pointed out the common origin of LraI restriction-modification system with previously described EcoRI-like restriction-modification systems.


Assuntos
Proteínas de Bactérias/metabolismo , Lactococcus/enzimologia , Lactococcus/genética , Proteínas Recombinantes/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração Osmolar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética
20.
Front Microbiol ; 9: 2774, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498487

RESUMO

The gene cluster responsible for the production of the aureocin A53-like bacteriocin, lactolisterin BU, is located on plasmid pBU6 in Lactococcus lactis subsp. lactis BGBU1-4. Heterologous expression of pBU6 confirmed that production and limited immunity to lactolisterin BU were provided by the plasmid. Comparative analysis of aureocin A53-like operons revealed that the structural genes shared a low level of identity, while other genes were without homology, indicating a different origin. Subcloning and expression of genes located downstream of the structural gene, lliBU, revealed that the lactolisterin BU cluster consists of four genes: the structural gene lliBU, the abcT gene encoding an ABC transporter, the accL gene encoding an accessory protein and the immL gene which provides limited immunity to lactolisterin BU. Reverse transcription analysis revealed that all genes were transcribed as one polycistronic mRNA. Attempts to split the lactolisterin BU operon, even when both parts were under control of the PlliBU promoter, were unsuccessful indicating that expression of lactolisterin BU is probably precisely regulated at the translational level by translational coupling and is possible only when all genes of the operon are in cis constellation. Two ρ-independent transcription terminators were detected in the lactolisterin BU operon: the first in the intergenic region of the lliBU and abcT genes and the second at the end of operon. Deletion of the second transcription terminator did not influence production of the bacteriocin in lactococci.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA