Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 76: 389-411, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650669

RESUMO

Diversity-generating retroelements (DGRs) create vast amounts of targeted, functional diversity by facilitating the rapid evolution of ligand-binding protein domains. Thousands of DGRs have been identified in bacteria, archaea, and their respective viruses. They are broadly distributed throughout the microbial world, with enrichment observed in certain taxa and environments. The diversification machinery works through a novel mechanism termed mutagenic retrohoming, whereby nucleotide sequence information is copied from an invariant DNA template repeat (TR) into an RNA intermediate, selectively mutagenized at TR adenines during cDNA synthesis by a DGR-encoded reverse transcriptase, and transferred to a variable repeat (VR) region within a variable-protein gene (54). This unidirectional flow of information leaves TR-DNA sequences unmodified, allowing for repeated rounds of mutagenic retrohoming to optimize variable-protein function. DGR target genes are often modular and can encode one or more of a wide variety of discrete functional domains appended to a diversifiable ligand-binding motif. Bacterial variable proteins often localize to cellsurfaces, although a subset appear to be cytoplasmic, while phage-encoded DGRs commonly diversify tail fiber-associated receptor-binding proteins. Here, we provide a comprehensive review of the mechanism and consequences of accelerated protein evolution by these unique and beneficial genetic elements.


Assuntos
Bacteriófagos , Retroelementos , Proteínas de Bactérias/genética , Bacteriófagos/genética , Evolução Molecular , Variação Genética , Ligantes
2.
Nature ; 580(7805): 658-662, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350467

RESUMO

R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics1-4. Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold1,2. Fine-tuning of such nucleic acid-free protein machines for precision medicine calls for an atomic description of the entire complex and contraction mechanism, which is not available from baseplate structures of the (DNA-containing) T4 bacteriophage5. Here we report the atomic model of the complete R2 pyocin in its pre-contraction and post-contraction states, each containing 384 subunits of 11 unique atomic models of 10 gene products. Comparison of these structures suggests the following sequence of events during pyocin contraction: tail fibres trigger lateral dissociation of baseplate triplexes; the dissociation then initiates a cascade of events leading to sheath contraction; and this contraction converts chemical energy into mechanical force to drive the iron-tipped tube across the bacterial cell surface, killing the bacterium.


Assuntos
Pseudomonas aeruginosa , Piocinas/química , Piocinas/metabolismo , Bacteriófago T4/química , Bacteriófago T4/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Genes Bacterianos/genética , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Especificidade por Substrato , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(37): 18597-18606, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439817

RESUMO

Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Tier-1 Select Agents that cause melioidosis and glanders, respectively. These are highly lethal human infections with limited therapeutic options. Intercellular spread is a hallmark of Burkholderia pathogenesis, and its prominent ties to virulence make it an attractive therapeutic target. We developed a high-throughput cell-based phenotypic assay and screened ∼220,000 small molecules for their ability to disrupt intercellular spread by Burkholderia thailandensis, a closely related BSL-2 surrogate. We identified 268 hits, and cross-species validation found 32 hits that also disrupt intercellular spread by Bp and/or Bm Among these were a fluoroquinolone analog, which we named burkfloxacin (BFX), which potently inhibits growth of intracellular Burkholderia, and flucytosine (5-FC), an FDA-approved antifungal drug. We found that 5-FC blocks the intracellular life cycle at the point of type VI secretion system 5 (T6SS-5)-mediated cell-cell spread. Bacterial conversion of 5-FC to 5-fluorouracil and subsequently to fluorouridine monophosphate is required for potent and selective activity against intracellular Burkholderia In a murine model of fulminant respiratory melioidosis, treatment with BFX or 5-FC was significantly more effective than ceftazidime, the current antibiotic of choice, for improving survival and decreasing bacterial counts in major organs. Our results demonstrate the utility of cell-based phenotypic screening for Select Agent drug discovery and warrant the advancement of BFX and 5-FC as candidate therapeutics for melioidosis in humans.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Ciprofloxacina/farmacologia , Reposicionamento de Medicamentos , Flucitosina/farmacologia , Melioidose/tratamento farmacológico , Animais , Burkholderia pseudomallei/patogenicidade , Ciprofloxacina/análogos & derivados , Ciprofloxacina/uso terapêutico , Citoplasma/efeitos dos fármacos , Citoplasma/microbiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Flucitosina/uso terapêutico , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Melioidose/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Virulência
4.
BMC Genomics ; 21(1): 664, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977771

RESUMO

BACKGROUND: Cyanobacteria maintain extensive repertoires of regulatory genes that are vital for adaptation to environmental stress. Some cyanobacterial genomes have been noted to encode diversity-generating retroelements (DGRs), which promote protein hypervariation through localized retrohoming and codon rewriting in target genes. Past research has shown DGRs to mainly diversify proteins involved in cell-cell attachment or viral-host attachment within viral, bacterial, and archaeal lineages. However, these elements may be critical in driving variation for proteins involved in other core cellular processes. RESULTS: Members of 31 cyanobacterial genera encode at least one DGR, and together, their retroelements form a monophyletic clade of closely-related reverse transcriptases. This class of retroelements diversifies target proteins with unique domain architectures: modular ligand-binding domains often paired with a second domain that is linked to signal response or regulation. Comparative analysis indicates recent intragenomic duplication of DGR targets as paralogs, but also apparent intergenomic exchange of DGR components. The prevalence of DGRs and the paralogs of their targets is disproportionately high among colonial and filamentous strains of cyanobacteria. CONCLUSION: We find that colonial and filamentous cyanobacteria have recruited DGRs to optimize a ligand-binding module for apparent function in signal response or regulation. These represent a unique class of hypervariable proteins, which might offer cyanobacteria a form of plasticity to adapt to environmental stress. This analysis supports the hypothesis that DGR-driven mutation modulates signaling and regulatory networks in cyanobacteria, suggestive of a new framework for the utility of localized genetic hypervariation.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Variação Genética , Retroelementos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência Conservada , Mutagênese , Ligação Proteica , Domínios Proteicos
5.
Nucleic Acids Res ; 46(18): 9711-9725, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007279

RESUMO

Diversity-generating retroelements (DGRs) create unparalleled levels of protein sequence variation through mutagenic retrohoming. Sequence information is transferred from an invariant template region (TR), through an RNA intermediate, to a protein-coding variable region. Selective infidelity at adenines during transfer is a hallmark of DGRs from disparate bacteria, archaea, and microbial viruses. We recapitulated selective infidelity in vitro for the prototypical Bordetella bacteriophage DGR. A complex of the DGR reverse transcriptase bRT and pentameric accessory variability determinant (Avd) protein along with DGR RNA were necessary and sufficient for synthesis of template-primed, covalently linked RNA-cDNA molecules, as observed in vivo. We identified RNA-cDNA molecules to be branched and most plausibly linked through 2'-5' phosphodiester bonds. Adenine-mutagenesis was intrinsic to the bRT-Avd complex, which displayed unprecedented promiscuity while reverse transcribing adenines of either DGR or non-DGR RNA templates. In contrast, bRT-Avd processivity was strictly dependent on the template, occurring only for the DGR RNA. This restriction was mainly due to a noncoding segment downstream of TR, which specifically bound Avd and created a privileged site for processive polymerization. Restriction to DGR RNA may protect the host genome from damage. These results define the early steps in a novel pathway for massive sequence diversification.


Assuntos
Adenina/metabolismo , Bacteriófagos/fisiologia , DNA Complementar/genética , DNA Polimerase Dirigida por RNA/fisiologia , Retroelementos/fisiologia , Moldes Genéticos , Bordetella/virologia , DNA Complementar/metabolismo , Variação Genética/efeitos dos fármacos , Variação Genética/fisiologia , Mutagênese Insercional/métodos , Mutagênese Sítio-Dirigida/métodos , Mutagênicos/metabolismo , Mutagênicos/farmacologia , DNA Polimerase Dirigida por RNA/metabolismo
6.
Nucleic Acids Res ; 46(1): 11-24, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186518

RESUMO

Diversity-generating retroelements (DGRs) are novel genetic elements that use reverse transcription to generate vast numbers of sequence variants in specific target genes. Here, we present a detailed comparative bioinformatic analysis that depicts the landscape of DGR sequences in nature as represented by data in GenBank. Over 350 unique DGRs are identified, which together form a curated reference set of putatively functional DGRs. We classify target genes, variable repeats and DGR cassette architectures, and identify two new accessory genes. The great variability of target genes implies roles of DGRs in many undiscovered biological processes. There is much evidence for horizontal transfers of DGRs, and we identify lineages of DGRs that appear to have specialized properties. Because GenBank contains data from only 10% of described species, the compilation may not be wholly representative of DGRs present in nature. Indeed, many DGR subtypes are present only once in the set and DGRs of the candidate phylum radiation bacteria, and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea archaea, are exceptionally diverse in sequence, with little information available about functions of their target genes. Nonetheless, this study provides a detailed framework for classifying and studying DGRs as they are uncovered and studied in the future.


Assuntos
Archaea/genética , Bactérias/genética , Bacteriófagos/genética , Variação Genética , Genômica/métodos , Retroelementos/genética , Sequência de Aminoácidos , Sequência de Bases , Coleta de Dados/métodos , Evolução Molecular , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
7.
Proc Natl Acad Sci U S A ; 114(47): E10187-E10195, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109248

RESUMO

Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation.


Assuntos
Bacteriófagos/genética , DNA Complementar/genética , Mutagênese/genética , DNA Polimerase Dirigida por RNA/genética , RNA/genética , Retroelementos/genética , Adaptação Biológica/genética , Bordetella/virologia , Evolução Molecular , Variação Genética , Transcrição Reversa/genética
8.
Bioorg Med Chem Lett ; 29(18): 2686-2689, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31383589

RESUMO

gem-Disubstituted N-heterocycles are rarely found in drugs, despite their potential to improve the drug-like properties of small molecule pharmaceuticals. Linezolid, a morpholine heterocycle-containing oxazolidinone antibiotic, exhibits significant side effects associated with human mitochondrial protein synthesis inhibition. We synthesized a gem-disubstituted linezolid analogue that when compared to linezolid, maintains comparable (albeit slightly diminished) activity against bacteria, comparable in vitro physicochemical properties, and a decrease in undesired mitochondrial protein synthesis (MPS) inhibition. This research contributes to the structure-activity-relationship data surrounding oxazolidinone MPS inhibition, and may inspire investigations into the utility of gem-disubstituted N-heterocycles in medicinal chemistry.


Assuntos
Antibacterianos/farmacologia , Compostos Heterocíclicos/farmacologia , Linezolida/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/química , Humanos , Linezolida/síntese química , Linezolida/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
9.
Proc Natl Acad Sci U S A ; 113(9): 2341-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884180

RESUMO

The BvgAS phosphorelay regulates ∼10% of the annotated genomes of Bordetella pertussis and Bordetella bronchiseptica and controls their infectious cycles. The hierarchical organization of the regulatory network allows the integration of contextual signals to control all or specific subsets of BvgAS-regulated genes. Here, we characterize a regulatory node involving a type III secretion system (T3SS)-exported protein, BtrA, and demonstrate its role in determining fundamental differences in T3SS phenotypes among Bordetella species. We show that BtrA binds and antagonizes BtrS, a BvgAS-regulated extracytoplasmic function (ECF) sigma factor, to couple the secretory activity of the T3SS apparatus to gene expression. In B. bronchiseptica, a remarkable spectrum of expression states can be resolved by manipulating btrA, encompassing over 80 BtrA-activated loci that include genes encoding toxins, adhesins, and other cell surface proteins, and over 200 BtrA-repressed genes that encode T3SS apparatus components, secretion substrates, the BteA effector, and numerous additional factors. In B. pertussis, BtrA retains activity as a BtrS antagonist and exerts tight negative control over T3SS genes. Most importantly, deletion of btrA in B. pertussis revealed T3SS-mediated, BteA-dependent cytotoxicity, which had previously eluded detection. This effect was observed in laboratory strains and in clinical isolates from a recent California pertussis epidemic. We propose that the BtrA-BtrS regulatory node determines subspecies-specific differences in T3SS expression among Bordetella species and that B. pertussis is capable of expressing a full range of T3SS-dependent phenotypes in the presence of appropriate contextual cues.


Assuntos
Bordetella bronchiseptica/virologia , Bordetella pertussis/virologia , Genes Bacterianos , Fator sigma/antagonistas & inibidores , Virulência/genética , Bordetella bronchiseptica/genética , Bordetella pertussis/genética
10.
BMC Microbiol ; 18(1): 19, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490612

RESUMO

BACKGROUND: A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. RESULTS: We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences. These data revealed that all seven phage isolates are of similar genomic length and GC% content, but their genomes are highly diverse, including genes encoding the capsid, tape measure, and tail proteins. In contrast to C. acnes phages, all P. freudenreichii phage genomes encode a putative integrase protein, suggesting they are capable of lysogenic growth. This is supported by the finding of related prophages in some P. freudenreichii strains. The seven phages could further be distinguished as belonging to two distinct genomic types, or 'clusters', based on nucleotide sequences, and host range analyses conducted on a collection of P. freudenreichii strains show a higher degree of host specificity than is observed for the C. acnes phages. CONCLUSIONS: Overall, our data demonstrate P. freudenreichii bacteriophages are distinct from C. acnes phages, as evidenced by their higher genetic diversity, potential for lysogenic growth, and more restricted host ranges. This suggests substantial differences in the evolution of these related species from the Propionibacteriaceae family and their phages, which is potentially related to their distinct environmental niches.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Queijo/virologia , Genoma Viral , Filogenia , Propionibacterium acnes/virologia , Propionibacterium freudenreichii/virologia , Bacteriófagos/ultraestrutura , Composição de Bases , Sequência de Bases , Queijo/microbiologia , Mapeamento Cromossômico , Variação Genética , Genômica , Especificidade de Hospedeiro , Lisogenia , Anotação de Sequência Molecular , Prófagos/genética , Propionibacteriaceae/virologia , Propionibacterium/virologia , Sequenciamento Completo do Genoma
11.
Traffic ; 15(11): 1206-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25082076

RESUMO

Listeria monocytogenes is a food-borne pathogenic bacterium that invades intestinal epithelial cells through a phagocytic pathway that relies on the activation of host cell RAB5 GTPases. Listeria monocytogenes must subsequently inhibit RAB5, however, in order to escape lysosome-mediated destruction. Relatively little is known about upstream RAB5 regulators during L. monocytogenes entry and phagosome escape processes in epithelial cells. Here we identify RIN1, a RAS effector and RAB5-directed guanine nucleotide exchange factor (GEF), as a host cell factor in L. monocytogenes infection. RIN1 is rapidly engaged following L. monocytogenes infection and is required for efficient invasion of intestinal epithelial cells. RIN1-mediated RAB5 activation later facilitates the fusion of phagosomes with lysosomes, promoting clearance of bacteria from the host cell. These results suggest that RIN1 is a host cell regulator that performs counterbalancing functions during early and late stages of L. monocytogenes infection, ultimately favoring pathogen clearance.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Listeria monocytogenes/patogenicidade , Proteínas rab5 de Ligação ao GTP/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos , Fagocitose , Fagossomos/metabolismo , Ratos
12.
Mol Cell ; 31(6): 813-23, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18922465

RESUMO

Diversity-generating retroelements (DGRs) introduce vast amounts of sequence diversity into target genes. During mutagenic homing, adenine residues are converted to random nucleotides in a unidirectional, reverse transcriptase-dependent transposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using a Bordetella bacteriophage DGR as a model, we demonstrate that homing occurs through a TR-containing RNA intermediate and is RecA independent. Marker transfer studies show that cDNA integration at the 3' end of VR occurs within a (G/C)(14) element, and deletion analysis demonstrates that the reaction is independent of 5' end cDNA integration. cDNA integration at the 5' end of VR requires only short stretches of sequence homology. We propose that homing occurs through a unique target DNA-primed reverse transcription mechanism that precisely regenerates target sequences. This nonproliferative "copy and replace" mechanism enables repeated rounds of protein diversification and optimization of ligand-receptor interactions.


Assuntos
Códon/genética , Variação Genética , Proteínas/genética , Retroelementos/genética , Sequência de Bases , DNA Complementar/genética , Marcadores Genéticos , Modelos Genéticos , Mutagênese Insercional , RNA Mensageiro , Recombinases Rec A/metabolismo , Moldes Genéticos
13.
Proc Natl Acad Sci U S A ; 110(20): 8212-7, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23633572

RESUMO

Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.


Assuntos
Proteínas de Bactérias/química , Legionella pneumophila/metabolismo , Lipoproteínas/química , Retroelementos , Sequência de Bases , Membrana Celular/metabolismo , Ilhas Genômicas , Dados de Sequência Molecular , Mutagênese , Fases de Leitura Aberta , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Propriedades de Superfície , Virulência
14.
Infect Immun ; 82(4): 1436-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421040

RESUMO

Pseudomallei group Burkholderia species are facultative intracellular parasites that spread efficiently from cell to cell by a mechanism involving the fusion of adjacent cell membranes. Intercellular fusion requires the function of the cluster 5 type VI secretion system (T6SS-5) and its associated valine-glycine repeat protein, VgrG5. Here we show that VgrG5 alleles are conserved and functionally interchangeable between Burkholderia pseudomallei and its relatives B. mallei, B. oklahomensis, and B. thailandensis. We also demonstrate that the integrity of the VgrG5 C-terminal domain is required for fusogenic activity, and we identify sequence motifs, including two hydrophobic segments, that are important for fusion. Mutagenesis and secretion experiments using B. pseudomallei strains engineered to express T6SS-5 in vitro show that the VgrG5 C-terminal domain is dispensable for T6SS-mediated secretion of Hcp5, demonstrating that the ability of VgrG5 to mediate membrane fusion can be uncoupled from its essential role in type VI secretion. We propose a model in which a unique fusogenic activity at the C terminus of VgrG5 facilitates intercellular spread by B. pseudomallei and related species following injection across the plasma membranes of infected cells.


Assuntos
Aderência Bacteriana/fisiologia , Sistemas de Secreção Bacterianos/fisiologia , Burkholderia pseudomallei/patogenicidade , Fusão de Membrana/fisiologia , Alelos , Burkholderia pseudomallei/genética , Morte Celular/fisiologia , Células HEK293 , Humanos , Fusão de Membrana/genética
15.
BMC Microbiol ; 14: 206, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085508

RESUMO

BACKGROUND: Burkholderia pseudomallei is a facultative intracellular pathogen and the causative agent of melioidosis. A conserved type III secretion system (T3SS3) and type VI secretion system (T6SS1) are critical for intracellular survival and growth. The T3SS3 and T6SS1 genes are coordinately and hierarchically regulated by a TetR-type regulator, BspR. A central transcriptional regulator of the BspR regulatory cascade, BsaN, activates a subset of T3SS3 and T6SS1 loci. RESULTS: To elucidate the scope of the BsaN regulon, we used RNAseq analysis to compare the transcriptomes of wild-type B. pseudomallei KHW and a bsaN deletion mutant. The 60 genes positively-regulated by BsaN include those that we had previously identified in addition to a polyketide biosynthesis locus and genes involved in amino acid biosynthesis. BsaN was also found to repress the transcription of 51 genes including flagellar motility loci and those encoding components of the T3SS3 apparatus. Using a promoter-lacZ fusion assay in E. coli, we show that BsaN together with the chaperone BicA directly control the expression of the T3SS3 translocon, effector and associated regulatory genes that are organized into at least five operons (BPSS1516-BPSS1552). Using a mutagenesis approach, a consensus regulatory motif in the promoter regions of BsaN-regulated genes was shown to be essential for transcriptional activation. CONCLUSIONS: BsaN/BicA functions as a central regulator of key virulence clusters in B. pseudomallei within a more extensive network of genetic regulation. We propose that BsaN/BicA controls a gene expression program that facilitates the adaption and intracellular survival of the pathogen within eukaryotic hosts.


Assuntos
Burkholderia pseudomallei/genética , Regulação Bacteriana da Expressão Gênica , Regulon , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Chaperonas Moleculares/metabolismo , Família Multigênica , Fatores de Transcrição/genética
16.
BMC Microbiol ; 14: 115, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24884837

RESUMO

BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease endemic in Southeast Asia and Northern Australia. This Gram-negative pathogen possesses numerous virulence factors including three "injection type" type three secretion systems (T3SSs). B. pseudomallei has been shown to activate NFκB in HEK293T cells in a Toll-like receptor and MyD88 independent manner that requires T3SS gene cluster 3 (T3SS3 or T3SSBsa). However, the mechanism of how T3SS3 contributes to NFκB activation is unknown. RESULTS: Known T3SS3 effectors are not responsible for NFκB activation. Furthermore, T3SS3-null mutants are able to activate NFκB almost to the same extent as wildtype bacteria at late time points of infection, corresponding to delayed escape into the cytosol. NFκB activation also occurs when bacteria are delivered directly into the cytosol by photothermal nanoblade injection. CONCLUSIONS: T3SS3 does not directly activate NFκB but facilitates bacterial escape into the cytosol where the host is able to sense the presence of the pathogen through cytosolic sensors leading to NFκB activation.


Assuntos
Sistemas de Secreção Bacterianos , Burkholderia pseudomallei/imunologia , Burkholderia pseudomallei/fisiologia , Citosol/microbiologia , Células Epiteliais/microbiologia , NF-kappa B/metabolismo , Fatores de Virulência/metabolismo , Linhagem Celular , Humanos
17.
PLoS Genet ; 7(12): e1002414, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22194701

RESUMO

Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification.


Assuntos
Bacteriófagos/genética , Bordetella/genética , DNA Cruciforme/genética , Sequências Repetidas Invertidas/genética , Retroelementos/genética , Sequência de Bases , Bordetella/virologia , DNA Complementar/genética , Variação Genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Proteínas/genética , Relação Estrutura-Atividade
18.
Proc Natl Acad Sci U S A ; 108(29): 12095-100, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730143

RESUMO

Burkholderia pseudomallei and Burkholderia thailandensis are related pathogens that invade a variety of cell types, replicate in the cytoplasm, and spread to nearby cells. We have investigated temporal and spatial requirements for virulence determinants in the intracellular life cycle, using genetic dissection and photothermal nanoblade delivery, which allows efficient placement of bacterium-sized cargo into the cytoplasm of mammalian cells. The conserved Bsa type III secretion system (T3SS(Bsa)) is dispensable for invasion, but is essential for escape from primary endosomes. By nanoblade delivery of B. thailandensis we demonstrate that all subsequent events in intercellular spread occur independently of T3SS(Bsa) activity. Although intracellular movement was essential for cell-cell spread by B. pseudomallei and B. thailandensis, neither BimA-mediated actin polymerization nor the formation of membrane protrusions containing bacteria was required for B. thailandensis. Surprisingly, the cryptic (fla2) flagellar system encoded on chromosome 2 of B. thailandensis supported rapid intracellular motility and efficient cell-cell spread. Plaque formation by both pathogens was dependent on the activity of a type VI secretion system (T6SS-1) that functions downstream from T3SS(Bsa)-mediated endosome escape. A remarkable feature of Burkholderia is their ability to induce the formation of multinucleate giant cells (MNGCs) in multiple cell types. By infection and nanoblade delivery, we observed complete correspondence between mutant phenotypes in assays for cell fusion and plaque formation, and time-course studies showed that plaque formation represents MNGC death. Our data suggest that the primary means for intercellular spread involves cell fusion, as opposed to pseudopod engulfment and bacterial escape from double-membrane vacuoles.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Burkholderia pseudomallei/fisiologia , Burkholderia pseudomallei/patogenicidade , Citosol/microbiologia , Melioidose/transmissão , Fusão Celular , Linhagem Celular , Técnicas Citológicas/métodos , Humanos , Lasers , Microscopia de Fluorescência , Fatores de Virulência
19.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586031

RESUMO

Due to envelope differences between Gram-positive and Gram-negative bacteria1, engineering precision bactericidal contractile nanomachines2 requires atomic-level understanding of their structures; however, only those killing a Gram-negative bacterium are currently known3,4. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar protein linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with differences between their targeted envelopes. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire length of the diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.

20.
BMC Pediatr ; 13: 49, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23560555

RESUMO

BACKGROUND: The distal GI microbiota of hospitalized preterm neonates has been established to be unique from that of healthy full-term infants; the proximal GI, more specifically gastroesophageal colonization has not been systematically addressed. We prospectively evaluated early colonization of gastroesophageal portion of the GI tract of VLBW infants. METHODS: This study involved 12 infants admitted to a level III NICU with gestational age (GA) 27 +/- 0.5 weeks and birth weight 1105 +/- 77 grams. The gastroesophageal microbial flora was evaluated using 16S rDNA analysis of aspirates collected in a sterile manner during the first 28 days of life. RESULTS: Bacteria were detected in 9 of the 12 neonates. Ureaplasma was the dominant species in the first week of life, however, staphylococci were the predominant bacteria overall. By the fourth week, Gram (-) bacteria increased in abundance to account for 50% of the total organisms. Firmicutes were present in the majority of the neonates and persisted throughout the 4 weeks comprising nearly half of the sequenced clones. Noticeably, only two distinct species of Staphylococcus epidermidis were found, suggesting acquisition from the environment. CONCLUSIONS: In our neonates, the esophagus and stomach environment changed from being relatively sterile at birth to becoming colonized by a phylogenetically diverse microbiota of low individual complexity. By the fourth week, we found predominance of Firmicutes and Proteobacteria. Bacteria from both phyla (CONS and Gram (-) organisms) are strongly implicated as causes of hospital-acquired infections (HAI). Evaluation of the measures preventing colonization with potentially pathogenic and pathogenic microorganisms from the hospital environment may be warranted and may suggest novel approaches to improving quality in neonatal care.


Assuntos
Esôfago/microbiologia , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Metagenoma , Estômago/microbiologia , DNA Bacteriano/análise , Feminino , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Filogenia , Reação em Cadeia da Polimerase , Estudos Prospectivos , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA