Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 579(7800): 586-591, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214246

RESUMO

Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.


Assuntos
Acetatos/metabolismo , Açúcares da Dieta/metabolismo , Frutose/metabolismo , Microbioma Gastrointestinal/fisiologia , Lipogênese , Fígado/metabolismo , ATP Citrato (pro-S)-Liase/deficiência , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetato-CoA Ligase/deficiência , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Animais , Ácido Cítrico/metabolismo , Açúcares da Dieta/administração & dosagem , Açúcares da Dieta/farmacologia , Ácidos Graxos/metabolismo , Frutose/administração & dosagem , Frutose/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Marcação por Isótopo , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Especificidade por Substrato
2.
Br J Cancer ; 124(12): 1900-1901, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33767420

RESUMO

Recent advances in our understanding of tumour heterogeneity alongside studies investigating altered metabolism within transformed tissue have identified metabolic pathways critical to cancer cell survival. Leveraging this information presents a promising new avenue for the generation of cancer-specific therapeutics and improved patient outcomes.


Assuntos
Acetato-CoA Ligase/antagonistas & inibidores , Acetatos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Resultado do Tratamento
3.
Nat Rev Neurosci ; 17(12): 766-776, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27811921

RESUMO

It is becoming clear that the manner by which the immune response resolves or contains infection by a pathogen varies according to the tissue that is affected. Unlike many peripheral cell types, CNS neurons are generally non-renewable. Thus, the cytolytic and inflammatory strategies that are effective in controlling infections in the periphery could be damaging if deployed in the CNS. Perhaps for this reason, the immune response to some CNS viral infections favours maintenance of neuronal integrity and non-neurolytic viral control. This modified immune response - when combined with the unique anatomy and physiology of the CNS - provides an ideal environment for the maintenance of viral genomes, including those of RNA viruses. Therefore, it is possible that such viruses can reactivate long after initial viral exposure, contributing to CNS disease.


Assuntos
Encéfalo/imunologia , Imunidade Inata/fisiologia , Neurônios/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/patologia , Vírus de RNA/metabolismo
4.
Br J Cancer ; 122(6): 868-884, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31942031

RESUMO

BACKGROUND: Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood. METHODS: We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC. RESULTS: We propose that MYC induces a multigenic program that involves changes in intracellular calcium signalling and fatty acid metabolism. We determined key roles for fatty acid transporters (CD36), lipases (LPL), and kinases (PDGFRB, CAMKK2, and AMPK) that each contribute to promoting FAO in human mammary epithelial cells that express oncogenic levels of MYC. Bioinformatic analysis further showed that this multigenic program is highly expressed and predicts poor survival in the claudin-low molecular subtype of TNBC, but not other subtypes of TNBCs, suggesting that efforts to target FAO in the clinic may best serve claudin-low TNBC patients. CONCLUSION: We identified critical pieces of the FAO machinery that have the potential to be targeted for improved treatment of patients with TNBC, especially the claudin-low molecular subtype.


Assuntos
Claudinas/metabolismo , Ácidos Graxos/metabolismo , Metabolômica/métodos , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Transfecção
5.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31270232

RESUMO

Genomic material from many neurotropic RNA viruses (e.g., measles virus [MV], West Nile virus [WNV], Sindbis virus [SV], rabies virus [RV], and influenza A virus [IAV]) remains detectable in the mouse brain parenchyma long after resolution of the acute infection. The presence of these RNAs in the absence of overt central nervous system (CNS) disease has led to the suggestion that they are viral remnants, with little or no potential to reactivate. Here we show that MV RNA remains detectable in permissive mouse neurons long after challenge with MV and, moreover, that immunosuppression can cause RNA and protein synthesis to rebound, triggering neuropathogenesis months after acute viral control. Robust recrudescence of viral transcription and protein synthesis occurs after experimental depletion of cells of the adaptive immune response and is associated with a loss of T resident memory (Trm) lymphocytes within the brain. The disease associated with loss of immune control is distinct from that seen during the acute infection: immune cell-depleted, long-term-infected mice display severe gait and motor problems, in contrast to the wasting and lethal disease that occur during acute infection of immunodeficient hosts. These results illuminate the potential consequences of noncytolytic, immune-mediated viral control in the CNS and demonstrate that what were once considered "resolved" RNA viral infections may, in fact, induce diseases later in life that are distinct from those caused by acute infection.IMPORTANCE Viral infections of neurons are often not cytopathic; thus, once-infected neurons survive, and viral RNAs can be detected long after apparent viral control. These RNAs are generally considered viral fossils, unlikely to contribute to central nervous system (CNS) disease. Using a mouse model of measles virus (MV) neuronal infection, we show that MV RNA is maintained in the CNS of infected mice long after acute control and in the absence of overt disease. Viral replication is suppressed by the adaptive immune response; when these immune cells are depleted, viral protein synthesis recurs, inducing a CNS disease that is distinct from that observed during acute infection. The studies presented here provide the basis for understanding how persistent RNA infections in the CNS are controlled by the host immune response, as well as the pathogenic consequences of noncytolytic viral control.


Assuntos
Vírus do Sarampo/genética , Neurônios/virologia , Infecções por Vírus de RNA/virologia , Animais , Encéfalo/virologia , Sistema Nervoso Central/virologia , Modelos Animais de Doenças , Feminino , Masculino , Sarampo/virologia , Vírus do Sarampo/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , RNA/genética , RNA/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , Vírus de RNA/metabolismo
6.
J Virol ; 89(21): 11011-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311886

RESUMO

UNLABELLED: In permissive mouse central nervous system (CNS) neurons, measles virus (MV) spreads in the absence of hallmark viral budding or neuronal death, with transmission occurring efficiently and exclusively via the synapse. MV infection also initiates a robust type I interferon (IFN) response, resulting in the synthesis of a large number of genes, including bone marrow stromal antigen 2 (Bst2)/tetherin/CD317. Bst2 restricts the release of some enveloped viruses, but to date, its role in viral infection of neurons has not been assessed. Consequently, we investigated how Bst2 was induced and what role it played in MV neuronal infection. The magnitude of induction of neuronal Bst2 RNA and protein following IFN exposure and viral infection was notably higher than in similarly treated mouse embryo fibroblasts (MEFs). Bst2 synthesis was both IFN and Stat1 dependent. Although Bst2 prevented MV release from nonneuronal cells, its deletion had no effect on viral pathogenesis in MV-challenged mice. Our findings underscore how cell-type-specific differences impact viral infection and pathogenesis. IMPORTANCE: Viral infections of the central nervous system can lead to debilitating disease and death. Moreover, it is becoming increasingly clear that nonrenewable cells, including most central nervous system neurons, combat neurotropic viral infections in fundamentally different ways than other rapidly dividing and renewable cell populations. Here we identify type I interferon signaling as a key inducer of a known antiviral protein (Bst2) in neurons. Unexpectedly, the gene is dispensable for clearance of neurotropic viral infection despite its well-defined contribution to limiting the spread of enveloped viruses in proliferating cells. A deeper appreciation of the importance of cell type heterogeneity in antiviral immunity will aid in the identification of unique therapeutic targets for life-threatening viral infections.


Assuntos
Antígenos CD/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Interferon Tipo I/metabolismo , Vírus do Sarampo/fisiologia , Sarampo/imunologia , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Primers do DNA/genética , Imunofluorescência , Hipocampo/citologia , Camundongos , Neurônios/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Nat Cancer ; 4(10): 1491-1507, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723305

RESUMO

Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Acetilcoenzima A/metabolismo , Linhagem Celular Tumoral , Acetatos/farmacologia , Acetatos/uso terapêutico , Acetatos/metabolismo , Linfócitos T/metabolismo , Fatores Imunológicos , Microambiente Tumoral
8.
Virology ; 563: 38-43, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34416448

RESUMO

BST2/tetherin is a transmembrane protein with antiviral activity; it is synthesized following exposure to interferons, and restricts the release of budding virus particles by tethering them to the host cell membrane. We previously showed that BST2 is induced in primary neurons following measles virus (MV) infection or type I interferon; however, BST2 was dispensable for protection against challenge with neuron-restricted MV. Here, we define the contribution of BST-2 in neuronal MV infection. Surprisingly, and in contrast to its antiviral role in non-neuronal cells, murine BST2 promotes MV infection in brains of permissive mice and in primary neuron cultures. Moreover, BST2 expression was predominantly observed in the non-synaptic fraction of purified neurons. These studies highlight a cell-type dependent role of a well-characterized antiviral protein in enhancing neuronal infection.


Assuntos
Antígenos CD/metabolismo , Vírus do Sarampo/fisiologia , Glicoproteínas de Membrana/metabolismo , Neurônios/virologia , Animais , Antígenos CD/genética , Encéfalo/metabolismo , Encéfalo/virologia , Regulação da Expressão Gênica , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Sinapses
9.
Cancer Res ; 81(5): 1252-1264, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414169

RESUMO

Acetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source. Genetic depletion of ACSS2 in tumors inhibits the growth of a wide variety of cancers. However, there are no studies on the use of an ACSS2 inhibitor to block tumor growth. In this study, we synthesized a small-molecule inhibitor that acts as a transition-state mimetic to block ACSS2 activity in vitro and in vivo. Pharmacologic inhibition of ACSS2 as a single agent impaired breast tumor growth. Collectively, our findings suggest that targeting ACSS2 may be an effective therapeutic approach for the treatment of patients with breast cancer. SIGNIFICANCE: These findings suggest that targeting acetate metabolism through ACSS2 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.


Assuntos
Acetato-CoA Ligase/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Estabilidade de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos Endogâmicos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Neuroimmunol ; 308: 25-29, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28187911

RESUMO

Central nervous system consequences of viral infections are rare, but when they do occur, they are often serious and clinically challenging to manage. Our awareness of the perils of neuroinvasion by viruses is growing: the recently appreciated impact of Ebola and Zika virus infections on CNS integrity, decreases in vaccination coverage for potentially neurotropic viruses such as measles, and increased neurovirulence of some influenza strains collectively highlight the need for a better understanding of the viral-neural interaction. Defining these interactions and how they result in neuropathogenesis is paramount for the development of better clinical strategies, especially given the limited treatment options that are available due to the unique physiology of the brain that limits migration of blood-borne molecules into the CNS parenchyma. In this perspective, we discuss some unique aspects of neuronal viral infections and immune-mediated control that impact the pathogenic outcomes of these infections. Further, we draw attention to an often overlooked aspect of neuropathogenesis research: that lack of overt disease, which is often equated with survival post-infection, likely only scratches the surface of the myriad ways by which neurotropic infections can impair CNS function.


Assuntos
Viroses do Sistema Nervoso Central/mortalidade , Sistema Nervoso Central/patologia , Estimativa de Kaplan-Meier , Animais , Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/genética , Modelos Animais de Doenças , Humanos , Interferon gama/deficiência , Interferon gama/genética , Proteína Cofatora de Membrana/deficiência , Proteína Cofatora de Membrana/genética , Camundongos , Camundongos Transgênicos , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA