Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 32: 157-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24655294

RESUMO

Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa phylum the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world's most vulnerable populations, claiming the lives of nearly one million children and pregnant women each year. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite's complex life cycle with a view toward developing the tools that will contribute to the prevention of disease and death and, ultimately, to the goal of malaria eradication. In so doing, we hope to inspire immunologists to participate in defeating this devastating disease.


Assuntos
Culicidae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Malária/imunologia , Plasmodium/imunologia , Animais , Culicidae/parasitologia , Humanos , Estágios do Ciclo de Vida , Malária/parasitologia , Malária/prevenção & controle , Plasmodium/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia
2.
Nat Immunol ; 19(3): 255-266, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29476183

RESUMO

Key events in T cell-dependent antibody responses, including affinity maturation, are dependent on the B cell's presentation of antigen to helper T cells at critical checkpoints in germinal-center formation in secondary lymphoid organs. Here we found that signaling via Toll-like receptor 9 (TLR9) blocked the ability of antigen-specific B cells to capture, process and present antigen and to activate antigen-specific helper T cells in vitro. In a mouse model in vivo and in a human clinical trial, the TLR9 agonist CpG enhanced the magnitude of the antibody response to a protein vaccine but failed to promote affinity maturation. Thus, TLR9 signaling might enhance antibody titers at the expense of the ability of B cells to engage in germinal-center events that are highly dependent on B cells' capture and presentation of antigen.


Assuntos
Formação de Anticorpos/imunologia , Apresentação de Antígeno/genética , Ativação Linfocitária/imunologia , Receptor Toll-Like 9/imunologia , Animais , Afinidade de Anticorpos , Centro Germinativo/imunologia , Humanos , Vacinas Antimaláricas , Camundongos , Receptor Toll-Like 9/agonistas
3.
Proc Natl Acad Sci U S A ; 121(5): e2316304121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261617

RESUMO

The discovery that Africans were resistant to infection by Plasmodium vivax (P. vivax) led to the conclusion that P. vivax invasion relied on the P. vivax Duffy Binding Protein (PvDBP) interacting with the Duffy Antigen Receptor for Chemokines (DARC) expressed on erythrocytes. However, the recent reporting of P. vivax infections in DARC-negative Africans suggests that the parasite might use an alternate invasion pathway to infect DARC-negative reticulocytes. To identify the parasite ligands and erythrocyte receptors that enable P. vivax invasion of both DARC-positive and -negative erythrocytes, we expressed region II containing the Duffy Binding-Like (DBL) domain of P. vivax erythrocyte binding protein (PvEBP-RII) and verified that the DBL domain binds to both DARC-positive and -negative erythrocytes. Furthermore, an AVidity-based EXtracelluar Interaction Screening (AVEXIS) was used to identify the receptor for PvEBP among over 750 human cell surface receptor proteins, and this approach identified only Complement Receptor 1 (CR1, CD35, or C3b/C4b receptor) as a PvEBP receptor. CR1 is a well-known receptor for P. falciparum Reticulocyte binding protein Homology 4 (PfRh4) and is present on the surfaces of both reticulocytes and normocytes, but its expression decreases as erythrocytes age. Indeed, PvEBP-RII bound to a subpopulation of both reticulocytes and normocytes, and this binding was blocked by the addition of soluble CR1 recombinant protein, indicating that CR1 is the receptor of PvEBP. In addition, we found that the Long Homology Repeat A (LHR-A) subdomain of CR1 is the only subdomain responsible for mediating the interaction with PvEBP-RII.


Assuntos
Malária Falciparum , Plasmodium vivax , Humanos , Receptores de Superfície Celular , Eritrócitos , Reticulócitos , Antígenos CD2 , Moléculas de Adesão Celular
4.
Cell ; 146(6): 855-8, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21907397

RESUMO

This year's Lasker DeBakey Clinical Research Award goes to Youyou Tu for the discovery of artemisinin and its use in the treatment of malaria--a medical advance that has saved millions of lives across the globe, especially in the developing world.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/uso terapêutico , Artemisininas/isolamento & purificação , Artemisininas/uso terapêutico , Distinções e Prêmios , Malária Falciparum/tratamento farmacológico , Medicina Tradicional Chinesa/história , China , Resistência a Medicamentos , Saúde Global , História do Século XX , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 120(1): e2215003120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577076

RESUMO

We used a transgenic parasite in which Plasmodium falciparum parasites were genetically modified to express Plasmodium vivax apical membrane antigen 1 (PvAMA1) protein in place of PfAMA1 to study PvAMA1-mediated invasion. In P. falciparum, AMA1 interaction with rhoptry neck protein 2 (RON2) is known to be crucial for invasion, and PfRON2 peptides (PfRON2p) blocked the invasion of PfAMA1 wild-type parasites. However, PfRON2p has no effect on the invasion of transgenic parasites expressing PvAMA1 indicating that PfRON2 had no role in the invasion of PvAMA1 transgenic parasites. Interestingly, PvRON2p blocked the invasion of PvAMA1 transgenic parasites in a dose-dependent manner. We found that recombinant PvAMA1 domains 1 and 2 (rPvAMA1) bound to reticulocytes and normocytes indicating that PvAMA1 directly interacts with erythrocytes during the invasion, and invasion blocking of PvRON2p may result from it interfering with PvAMA1 binding to erythrocytes. It was previously shown that the peptide containing Loop1a of PvAMA1 (PvAMA1 Loop1a) is also bound to reticulocytes. We found that the Loop1a peptide blocked the binding of PvAMA1 to erythrocytes. PvAMA1 Loop1a has no polymorphisms in contrast to other PvAMA1 loops and may be an attractive vaccine target. We thus present the evidence that PvAMA1 binds to erythrocytes in addition to interacting with PvRON2 suggesting that the P. vivax merozoites may exploit complex pathways during the invasion process.


Assuntos
Malária Falciparum , Plasmodium vivax , Humanos , Proteínas de Protozoários/química , Antígenos de Protozoários , Eritrócitos/metabolismo , Plasmodium falciparum/metabolismo , Reticulócitos/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035177

RESUMO

Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) to the endothelial lining of blood vessels protects parasites from splenic destruction, but also leads to detrimental inflammation and vessel occlusion. Surface display of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands exposes them to host antibodies and serum proteins. PfEMP1 are important targets of acquired immunity to malaria, and through evolution, the protein family has expanded and diversified to bind a select set of host receptors through antigenically diversified receptor-binding domains. Here, we show that complement component 1s (C1s) in serum cleaves PfEMP1 at semiconserved arginine motifs located at interdomain regions between the receptor-binding domains, rendering the IE incapable of binding the two main PfEMP1 receptors, CD36 and endothelial protein C receptor (EPCR). Bioinformatic analyses of PfEMP1 protein sequences from 15 P. falciparum genomes found the C1s motif was present in most PfEMP1 variants. Prediction of C1s cleavage and loss of binding to endothelial receptors was further corroborated by testing of several different parasite lines. These observations suggest that the parasites have maintained susceptibility for cleavage by the serine protease, C1s, and provides evidence for a complex relationship between the complement system and the P. falciparum cytoadhesion virulence determinant.


Assuntos
Aderência Bacteriana , Complemento C1/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , Humanos
7.
Electrophoresis ; 43(3): 509-515, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34679212

RESUMO

Rhoptry neck protein 2 (RON2) binds to the hydrophobic groove of apical membrane antigen 1 (AMA1), an interaction essential for invasion of red blood cells (RBCs) by Plasmodium falciparum (Pf) parasites. Vaccination with AMA1 alone has been shown to be immunogenic, but unprotective even against homologous challenge in human trials. However, the AMA1-RON2L (L is referred to as the loop region of RON2 peptide) complex is a promising candidate, as preclinical studies with Freund's adjuvant have indicated complete protection against lethal challenge in mice and superior protection against virulent infection in Aotus monkeys. To prepare for clinical trials of the AMA1-RON2L complex, identity and integrity of the candidate vaccine must be assessed, and characterization methods must be carefully designed to not dissociate the delicate complex during evaluation. In this study, we developed a native Tris-glycine gel method to separate and identify the AMA1-RON2L complex, which was further identified and confirmed by Western blotting using anti-AMA1 monoclonal antibodies (mAbs 4G2 and 2C2) and anti-RON2L polyclonal Ab coupled with mass spectrometry. The formation of complex was also confirmed by Capillary Isoelectric Focusing (cIEF). A short-term (48 h and 72 h at 4°C) stability study of AMA1-RON2L complex was also performed. The results indicate that the complex was stable for 72 h at 4°C. Our research demonstrates that the native Tris-glycine gel separation/Western blotting coupled with mass spectrometry and cIEF can fully characterize the identity and integrity of the AMA1-RON2L complex and provide useful quality control data for the subsequent clinical trials.


Assuntos
Antígenos de Protozoários , Vacinas Antimaláricas , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Glicina , Focalização Isoelétrica , Vacinas Antimaláricas/química , Proteínas de Membrana/química , Camundongos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
8.
J Immunol ; 204(2): 327-334, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31907275

RESUMO

Malaria is a deadly infectious disease caused by parasites of the Plasmodium spp. that takes an estimated 435,000 lives each year, primarily among young African children. For most children, malaria is a febrile illness that resolves with time, but in ∼1% of cases, for reasons we do not understand, malaria becomes severe and life threatening. Cerebral malaria (CM) is the most common form of severe malaria, accounting for the vast majority of childhood deaths from malaria despite highly effective antiparasite chemotherapy. Thus, CM is one of the most prevalent lethal brain diseases, and one for which we have no effective therapy. CM is, in part, an immune-mediated disease, and to fully understand CM, it is essential to appreciate the complex relationship between the malarial parasite and the human immune system. In this study, we provide a primer on malaria for immunologists and, in this context, review progress identifying targets for therapeutic intervention.


Assuntos
Malária Cerebral/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
9.
Proc Natl Acad Sci U S A ; 116(14): 7053-7061, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872477

RESUMO

Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.


Assuntos
Antígenos de Protozoários/metabolismo , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Malária Vivax/metabolismo , Plasmodium vivax/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos de Protozoários/genética , Sistema do Grupo Sanguíneo Duffy/genética , Eritrócitos/metabolismo , Malária Vivax/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Saimiri
10.
PLoS Pathog ; 15(9): e1008049, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491036

RESUMO

The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite.


Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/imunologia , Humanos , Malária/metabolismo , Malária Falciparum/metabolismo , Proteínas de Membrana/metabolismo , Merozoítos/metabolismo , Organelas/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico/fisiologia
11.
Proc Natl Acad Sci U S A ; 115(5): 1063-1068, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339517

RESUMO

Recent advances have identified a new paradigm for cerebral malaria pathogenesis in which endothelial protein C receptor (EPCR) is a major host receptor for sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain and other vital organs. The parasite adhesins that bind EPCR are members of the IE variant surface antigen family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) containing specific adhesion domains called domain cassette (DC) 8 and DC13. The binding interaction site between PfEMP1 and EPCR has been mapped by biophysical and crystallography studies using recombinant proteins. However, studies examining the interaction of native PfEMP1 on the IE surface with EPCR are few. We aimed to study binding to EPCR by IEs expressing DC8 and DC13 PfEMP1 variants whose recombinant proteins have been used in key prior functional and structural studies. IE binding to EPCR immobilized on plastic and on human brain endothelial cells was examined in static and flow adhesion assays. Unexpectedly, we found that IEs expressing the DC13 PfEMP1 variant HB3var03 or IT4var07 did not bind to EPCR on plastic and the binding of these variants to brain endothelial cells was not dependent on EPCR. IEs expressing the DC8 variant IT4var19 did bind to EPCR, but this interaction was inhibited if normal human serum or plasma was present, raising the possibility that IE-EPCR interaction may be prevented by plasma components under physiological conditions. These data highlight a discrepancy in EPCR-binding activity between PfEMP1 recombinant proteins and IEs, and indicate the critical need for further research to understand the pathophysiological significance of the PfEMP1-EPCR interaction.


Assuntos
Eritrócitos/parasitologia , Malária Cerebral/parasitologia , Malária Falciparum/parasitologia , Oligopeptídeos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Adesão Celular , Linhagem Celular , Receptor de Proteína C Endotelial/metabolismo , Epitopos/química , Humanos , Microcirculação , Peso Molecular , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(4): 774-779, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311293

RESUMO

Efforts to knock out Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) from asexual erythrocytic stage have not been successful, indicating an indispensable role of the enzyme in asexual growth. We recently reported generation of a transgenic parasite with mutant CDPK1 [Bansal A, et al. (2016) MBio 7:e02011-16]. The mutant CDPK1 (T145M) had reduced activity of transphosphorylation. We reasoned that CDPK1 could be disrupted in the mutant parasites. Consistent with this assumption, CDPK1 was successfully disrupted in the mutant parasites using CRISPR/Cas9. We and others could not disrupt PfCDPK1 in the WT parasites. The CDPK1 KO parasites show a slow growth rate compared with the WT and the CDPK1 T145M parasites. Additionally, the CDPK1 KO parasites show a defect in both male and female gametogenesis and could not establish an infection in mosquitoes. Complementation of the KO parasite with full-length PfCDPK1 partially rescued the asexual growth defect and mosquito infection. Comparative global transcriptomics of WT and the CDPK1 KO schizonts using RNA-seq show significantly high transcript expression of gametocyte-specific genes in the CDPK1 KO parasites. This study conclusively demonstrates that CDPK1 is a good target for developing transmission-blocking drugs.


Assuntos
Culicidae/parasitologia , Gametogênese , Proteínas Quinases/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica , Plasmodium falciparum
13.
Proc Natl Acad Sci U S A ; 115(51): E12024-E12033, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514812

RESUMO

The deadliest complication of Plasmodium falciparum infection is cerebral malaria (CM), with a case fatality rate of 15 to 25% in African children despite effective antimalarial chemotherapy. No adjunctive treatments are yet available for this devastating disease. We previously reported that the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) rescued mice from experimental CM (ECM) when administered late in the infection, a time by which mice had already suffered blood-brain barrier (BBB) dysfunction, brain swelling, and hemorrhaging. Herein, we used longitudinal MR imaging to visualize brain pathology in ECM and the impact of a new DON prodrug, JHU-083, on disease progression in mice. We demonstrate in vivo the reversal of disease markers in symptomatic, infected mice following treatment, including the resolution of edema and BBB disruption, findings usually associated with a fatal outcome in children and adults with CM. Our results support the premise that JHU-083 is a potential adjunctive treatment that could rescue children and adults from fatal CM.


Assuntos
Diazo-Oxo-Norleucina/antagonistas & inibidores , Diazo-Oxo-Norleucina/uso terapêutico , Glutamina/antagonistas & inibidores , Imageamento por Ressonância Magnética/métodos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/patologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/patologia , Adulto , Animais , Antimaláricos/uso terapêutico , Biomarcadores , Barreira Hematoencefálica/patologia , Encéfalo/parasitologia , Encéfalo/patologia , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/patologia , Criança , Diazo-Oxo-Norleucina/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Malária Cerebral/diagnóstico por imagem , Malária Cerebral/parasitologia , Malária Falciparum/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/patogenicidade
14.
Nature ; 499(7457): 223-7, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23823717

RESUMO

The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1 protein. During infection the clonal parasite population expresses only one gene at a time before switching to the expression of a new variant antigen as an immune-evasion mechanism to avoid the host antibody response. The mechanism by which 59 of the 60 var genes are silenced remains largely unknown. Here we show that knocking out the P. falciparum variant-silencing SET gene (here termed PfSETvs), which encodes an orthologue of Drosophila melanogaster ASH1 and controls histone H3 lysine 36 trimethylation (H3K36me3) on var genes, results in the transcription of virtually all var genes in the single parasite nuclei and their expression as proteins on the surface of individual infected red blood cells. PfSETvs-dependent H3K36me3 is present along the entire gene body, including the transcription start site, to silence var genes. With low occupancy of PfSETvs at both the transcription start site of var genes and the intronic promoter, expression of var genes coincides with transcription of their corresponding antisense long noncoding RNA. These results uncover a previously unknown role of PfSETvs-dependent H3K36me3 in silencing var genes in P. falciparum that might provide a general mechanism by which orthologues of PfSETvs repress gene expression in other eukaryotes. PfSETvs knockout parasites expressing all PfEMP1 proteins may also be applied to the development of a malaria vaccine.


Assuntos
Inativação Gênica , Histonas/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Fatores de Virulência/genética , Proteínas de Ligação a DNA , Proteínas de Drosophila , Eritrócitos/citologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Genes de Protozoários/genética , Histonas/química , Íntrons/genética , Lisina/metabolismo , Vacinas Antimaláricas/genética , Metilação , Plasmodium falciparum/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , RNA Longo não Codificante/genética , Fatores de Transcrição , Sítio de Iniciação de Transcrição , Virulência/genética
15.
Proc Natl Acad Sci U S A ; 113(22): 6271-6, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27190089

RESUMO

The ability of the malaria parasite Plasmodium vivax to invade erythrocytes is dependent on the expression of the Duffy blood group antigen on erythrocytes. Consequently, Africans who are null for the Duffy antigen are not susceptible to P. vivax infections. Recently, P. vivax infections in Duffy-null Africans have been documented, raising the possibility that P. vivax, a virulent pathogen in other parts of the world, may expand malarial disease in Africa. P. vivax binds the Duffy blood group antigen through its Duffy-binding protein 1 (DBP1). To determine if mutations in DBP1 resulted in the ability of P. vivax to bind Duffy-null erythrocytes, we analyzed P. vivax parasites obtained from two Duffy-null individuals living in Ethiopia where Duffy-null and -positive Africans live side-by-side. We determined that, although the DBP1s from these parasites contained unique sequences, they failed to bind Duffy-null erythrocytes, indicating that mutations in DBP1 did not account for the ability of P. vivax to infect Duffy-null Africans. However, an unusual DNA expansion of DBP1 (three and eight copies) in the two Duffy-null P. vivax infections suggests that an expansion of DBP1 may have been selected to allow low-affinity binding to another receptor on Duffy-null erythrocytes. Indeed, we show that Salvador (Sal) I P. vivax infects Squirrel monkeys independently of DBP1 binding to Squirrel monkey erythrocytes. We conclude that P. vivax Sal I and perhaps P. vivax in Duffy-null patients may have adapted to use new ligand-receptor pairs for invasion.


Assuntos
Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Malária Vivax/parasitologia , Mutação/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , África/epidemiologia , Animais , Variações do Número de Cópias de DNA , Sistema do Grupo Sanguíneo Duffy/genética , Eritrócitos/patologia , Humanos , Malária Vivax/epidemiologia , Malária Vivax/genética , Malária Vivax/patologia , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Saimiri
16.
Proc Natl Acad Sci U S A ; 112(42): 13075-80, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438846

RESUMO

The most deadly complication of Plasmodium falciparum infection is cerebral malaria (CM) with a case fatality rate of 15-25% in African children despite effective antimalarial chemotherapy. There are no adjunctive treatments for CM, so there is an urgent need to identify new targets for therapy. Here we show that the glutamine analog 6-diazo-5-oxo-L-norleucine (DON) rescues mice from CM when administered late in the infection a time at which mice already are suffering blood-brain barrier dysfunction, brain swelling, and hemorrhaging accompanied by accumulation of parasite-specific CD8(+) effector T cells and infected red blood cells in the brain. Remarkably, within hours of DON treatment mice showed blood-brain barrier integrity, reduced brain swelling, decreased function of activated effector CD8(+) T cells in the brain, and levels of brain metabolites that resembled those in uninfected mice. These results suggest DON as a strong candidate for an effective adjunctive therapy for CM in African children.


Assuntos
Antimaláricos/uso terapêutico , Diazo-Oxo-Norleucina/uso terapêutico , Glutamina/metabolismo , Malária Cerebral/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Animais , Antimaláricos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Malária Cerebral/metabolismo , Malária Falciparum/metabolismo , Camundongos
17.
Proc Natl Acad Sci U S A ; 111(28): 10311-6, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958881

RESUMO

An essential step in the invasion of red blood cells (RBCs) by Plasmodium falciparum (Pf) merozoites is the binding of rhoptry neck protein 2 (RON2) to the hydrophobic groove of apical membrane antigen 1 (AMA1), triggering junction formation between the apical end of the merozoite and the RBC surface to initiate invasion. Vaccination with AMA1 provided protection against homologous parasites in one of two phase 2 clinical trials; however, despite its ability to induce high-titer invasion-blocking antibodies in a controlled human challenge trial, the vaccine conferred little protection even against the homologous parasite. Here we provide evidence that immunization with an AMA1-RON2 peptide complex, but not with AMA1 alone, provided complete protection against a lethal Plasmodium yoelii challenge in mice. Significantly, IgG from mice immunized with the complex transferred protection. Furthermore, IgG from PfAMA1-RON2-immunized animals showed enhanced invasion inhibition compared with IgG elicited by AMA1 alone. Interestingly, this qualitative increase in inhibitory activity appears to be related, at least in part, to a switch in the proportion of IgG specific for certain loop regions in AMA1 surrounding the binding site of RON2. Antibodies induced by the complex were not sufficient to block the FVO strain heterologous parasite, however, reinforcing the need to include multiallele AMA1 to cover polymorphisms. Our results suggest that AMA1 subunit vaccines may be highly effective when presented to the immune system as an invasion complex with RON2.


Assuntos
Antígenos de Protozoários/farmacologia , Eritrócitos/imunologia , Imunização , Vacinas Antimaláricas/farmacologia , Malária Falciparum/imunologia , Proteínas de Membrana/farmacologia , Complexos Multiproteicos/farmacologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/farmacologia , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/genética , Malária Falciparum/prevenção & controle , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Plasmodium falciparum/genética , Plasmodium yoelii/genética , Plasmodium yoelii/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia
19.
Proc Natl Acad Sci U S A ; 109(17): 6692-7, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493233

RESUMO

The s48/45 domain was first noted in Plasmodium proteins more than 15 y ago. Previously believed to be unique to Plasmodium, the s48/45 domain is present in other aconoidasidans. In Plasmodium, members of the s48/45 family of proteins are localized on the surface of the parasite in different stages, mostly by glycosylphosphatydylinositol-anchoring. Members such as P52 and P36 seem to play a role in invasion of hepatocytes, and Pfs230 and Pfs48/45 are involved in fertilization in the sexual stages and have been consistently studied as targets of transmission-blocking vaccines for years. In this report, we present the molecular structure for the s48/45 domain corresponding to the C-terminal domain of the blood-stage protein Pf12 from Plasmodium falciparum, obtained by NMR. Our results indicate that this domain is a ß-sandwich formed by two sheets with a mixture of parallel and antiparallel strands. Of the six conserved cysteines, two pairs link the ß-sheets by two disulfide bonds, and the third pair forms a bond outside the core. The structure of the s48/45 domain conforms well to the previously defined surface antigen 1 (SAG1)-related-sequence (SRS) fold observed in the SAG family of surface antigens found in Toxoplasma gondii. Despite extreme sequence divergence, remarkable spatial conservation of one of the disulfide bonds is observed, supporting the hypothesis that the domains have evolved from a common ancestor. Furthermore, a homologous domain is present in ephrins, raising the possibility that the precursor of the s48/45 and SRS domains emerged from an ancient transfer to Apicomplexa from metazoan hosts.


Assuntos
Cisteína/química , Plasmodium falciparum/química , Animais , Ressonância Magnética Nuclear Biomolecular , Proteínas de Protozoários/química
20.
Proc Natl Acad Sci U S A ; 109(14): 5429-34, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431641

RESUMO

The malaria parasite, Plasmodium falciparum, and the human immune system have coevolved to ensure that the parasite is not eliminated and reinfection is not resisted. This relationship is likely mediated through a myriad of host-parasite interactions, although surprisingly few such interactions have been identified. Here we show that the 33-kDa fragment of P. falciparum merozoite surface protein 1 (MSP1(33)), an abundant protein that is shed during red blood cell invasion, binds to the proinflammatory protein, S100P. MSP1(33) blocks S100P-induced NFκB activation in monocytes and chemotaxis in neutrophils. Remarkably, S100P binds to both dimorphic alleles of MSP1, estimated to have diverged >27 Mya, suggesting an ancient, conserved relationship between these parasite and host proteins that may serve to attenuate potentially damaging inflammatory responses.


Assuntos
Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteína 1 de Superfície de Merozoito/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/química , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA