Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood ; 137(3): 387-391, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32814349

RESUMO

Interferon-α (IFN-α)-based treatments can induce hematologic and molecular responses (HRs and MRs, respectively) in polycythemia vera (PV); however, patients do not respond equally. Germline genetic factors have been implicated in differential drug responses. We addressed the effect of common germline polymorphisms on HR and MR after treatment of PV in the PROUD-PV and CONTINUATION-PV studies in a total of 122 patients who received ropeginterferon alfa-2b. Genome-wide association studies using longitudinal data on HR and MR over a 36-month follow-up did not reveal any associations at the level of genome-wide statistical significance. Furthermore, we performed targeted association analyses at the interferon lambda 4 (IFNL4) locus, well known for its role in hepatitis C viral clearance and recently reported to influence HR during treatment of myeloproliferative neoplasms. We did not observe any association of IFNL4 polymorphisms with HR in our study cohort; however, we demonstrated a statistically significant effect of the functionally causative IFNL4 diplotype (haplotype pair, including the protein-coding variants rs368234815/rs117648444) on MR (P = 3.91 × 10-4; odds ratio, 10.80; 95% confidence interval, 2.39-69.97) as reflected in differential JAK2V617F mutational burden changes according to IFNL4 diplotype status. Stratification of patients with PV based on IFNL4 functionality may allow for optimizing patient management during IFN-α-based therapy.


Assuntos
Células Germinativas/metabolismo , Interferon-alfa/uso terapêutico , Policitemia Vera/tratamento farmacológico , Policitemia Vera/genética , Seguimentos , Predisposição Genética para Doença , Humanos , Interleucinas/genética , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Resultado do Tratamento
2.
Am J Hematol ; 98(5): 770-783, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36814396

RESUMO

Myeloproliferative neoplasms (MPN) are characterized by uncontrolled expansion of myeloid cells, disease-related mutations in certain driver-genes including JAK2, CALR, and MPL, and a substantial risk to progress to secondary acute myeloid leukemia (sAML). Although behaving as stem cell neoplasms, little is known about disease-initiating stem cells in MPN. We established the phenotype of putative CD34+ /CD38- stem cells and CD34+ /CD38+ progenitor cells in MPN. A total of 111 patients with MPN suffering from polycythemia vera, essential thrombocythemia, or primary myelofibrosis (PMF) were examined. In almost all patients tested, CD34+ /CD38- stem cells expressed CD33, CD44, CD47, CD52, CD97, CD99, CD105, CD117, CD123, CD133, CD184, CD243, and CD274 (PD-L1). In patients with PMF, MPN stem cells often expressed CD25 and sometimes also CD26 in an aberrant manner. MPN stem cells did not exhibit substantial amounts of CD90, CD273 (PD-L2), CD279 (PD-1), CD366 (TIM-3), CD371 (CLL-1), or IL-1RAP. The phenotype of CD34+ /CD38- stem cells did not change profoundly during progression to sAML. The disease-initiating capacity of putative MPN stem cells was confirmed in NSGS mice. Whereas CD34+ /CD38- MPN cells engrafted in NSGS mice, no substantial engraftment was produced by CD34+ /CD38+ or CD34- cells. The JAK2-targeting drug fedratinib and the BRD4 degrader dBET6 induced apoptosis and suppressed proliferation in MPN stem cells. Together, MPN stem cells display a unique phenotype, including cytokine receptors, immune checkpoint molecules, and other clinically relevant target antigens. Phenotypic characterization of neoplastic stem cells in MPN and sAML should facilitate their enrichment and the development of stem cell-eradicating (curative) therapies.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Policitemia Vera , Animais , Camundongos , Calreticulina/genética , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Células-Tronco Neoplásicas , Proteínas Nucleares/genética , Fenótipo , Policitemia Vera/genética , Fatores de Transcrição/genética , Humanos
3.
Am J Hematol ; 97(4): 390-400, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35015307

RESUMO

Myeloproliferative neoplasms (MPN) are chronic stem cell disorders characterized by enhanced proliferation of myeloid cells, immune deregulation, and drug resistance. JAK2 somatic mutations drive the disease in 50-60% and CALR mutations in 25-30% of cases. Published data suggest that JAK2-V617F-mutated MPN cells express the resistance-related checkpoint PD-L1. By applying RNA-sequencing on granulocytes of 113 MPN patients, we demonstrate that PD-L1 expression is highest among polycythemia vera patients and that PD-L1 expression correlates with JAK2-V617F mutational burden (R = 0.52; p < .0001). Single nucleotide polymorphism (SNP) arrays showed that chromosome 9p uniparental disomy (UPD) covers both PD-L1 and JAK2 in all MPN patients examined. MPN cells in JAK2-V617F-positive patients expressed higher levels of PD-L1 if 9p UPD was present compared to when it was absent (p < .0001). Moreover, haplotype-based association analyses provided evidence for germline genetic factors at PD-L1 locus contributing to MPN susceptibility independently of the previously described GGCC risk haplotype. We also found that PD-L1 is highly expressed on putative CD34+ CD38- disease-initiating neoplastic stem cells (NSC) in both JAK2 and CALR-mutated MPN. PD-L1 overexpression decreased upon exposure to JAK2 blockers and BRD4-targeting agents, suggesting a role for JAK2-STAT5-signaling and BRD4 in PD-L1 expression. Whether targeting of PD-L1 can overcome NSC resistance in MPN remains to be elucidated in forthcoming studies.


Assuntos
Antígeno B7-H1 , Transtornos Mieloproliferativos , Policitemia Vera , Dissomia Uniparental , Antígeno B7-H1/genética , Proteínas de Ciclo Celular/genética , Humanos , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Proteínas Nucleares/genética , Policitemia Vera/genética , Fatores de Transcrição , Dissomia Uniparental/genética
4.
Blood ; 134(2): 199-210, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31064751

RESUMO

Ph-negative myeloproliferative neoplasms (MPNs) are hematological cancers that can be subdivided into entities with distinct clinical features. Somatic mutations in JAK2, CALR, and MPL have been described as drivers of the disease, together with a variable landscape of nondriver mutations. Despite detailed knowledge of disease mechanisms, targeted therapies effective enough to eliminate MPN cells are still missing. In this study of 113 MPN patients, we aimed to comprehensively characterize the mutational landscape of the granulocyte transcriptome using RNA sequencing data and subsequently examine the applicability of immunotherapeutic strategies for MPN patients. Following implementation of customized workflows and data filtering, we identified a total of 13 (12/13 novel) gene fusions, 231 nonsynonymous single nucleotide variants, and 21 insertions and deletions in 106 of 113 patients. We found a high frequency of SF3B1-mutated primary myelofibrosis patients (14%) with distinct 3' splicing patterns, many of these with a protein-altering potential. Finally, from all mutations detected, we generated a virtual peptide library and used NetMHC to predict 149 unique neoantigens in 62% of MPN patients. Peptides from CALR and MPL mutations provide a rich source of neoantigens as a result of their unique ability to bind many common MHC class I molecules. Finally, we propose that mutations derived from splicing defects present in SF3B1-mutated patients may offer an unexplored neoantigen repertoire in MPNs. We validated 35 predicted peptides to be strong MHC class I binders through direct binding of predicted peptides to MHC proteins in vitro. Our results may serve as a resource for personalized vaccine or adoptive cell-based therapy development.


Assuntos
Antígenos de Neoplasias/genética , Transtornos Mieloproliferativos/genética , Idoso , Calreticulina/genética , Feminino , Humanos , Imunoterapia/métodos , Masculino , Pessoa de Meia-Idade , Mutação , Receptores de Trombopoetina/genética , Análise de Sequência de RNA/métodos , Transcriptoma
5.
Blood ; 133(15): 1677-1690, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635286

RESUMO

Over 80% of patients with myeloproliferative neoplasms (MPNs) harbor the acquired somatic JAK2 V617F mutation. JAK inhibition is not curative and fails to induce a persistent response in most patients, illustrating the need for the development of novel therapeutic approaches. We describe a critical role for CDK6 in MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival. The CDK6 protein interferes with 3 hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes nuclear factor κB (NF-κB) signaling and contributes to cytokine production while inhibiting apoptosis. The effects are not mirrored by palbociclib, showing that the functions of CDK6 in MPN pathogenesis are largely kinase independent. Our findings thus provide a rationale for targeting CDK6 in MPN.


Assuntos
Apoptose , Quinase 6 Dependente de Ciclina/farmacologia , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/etiologia , NF-kappa B/metabolismo , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/mortalidade , Transtornos Mieloproliferativos/patologia , Neoplasias , Transdução de Sinais
6.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759825

RESUMO

The development of leukemia is a step-wise process that is associated with molecular diversification and clonal selection of neoplastic stem cells. Depending on the number and combinations of lesions, one or more sub-clones expand/s after a variable latency period. Initial stages may develop early in life or later in adulthood and include premalignant (indolent) stages and the malignant phase, defined by an acute leukemia. We recently proposed a cancer model in which the earliest somatic lesions are often age-related early mutations detectable in apparently healthy individuals and where additional oncogenic mutations will lead to the development of an overt neoplasm that is usually a preleukemic condition such as a myelodysplastic syndrome. These neoplasms may or may not transform to overt acute leukemia over time. Thus, depending on the type and number of somatic mutations, clonal hematopoiesis (CH) can be divided into CH with indeterminate potential (CHIP) and CH with oncogenic potential (CHOP). Whereas CHIP mutations per se usually create the molecular background of a neoplastic process, CHOP mutations are disease-related or even disease-specific lesions that trigger differentiation and/or proliferation of neoplastic cells. Over time, the acquisition of additional oncogenic events converts preleukemic neoplasms into secondary acute myeloid leukemia (sAML). In the present article, recent developments in the field are discussed with a focus on CHOP mutations that lead to distinct myeloid neoplasms, their role in disease evolution, and the impact of additional lesions that can drive a preleukemic neoplasm into sAML.


Assuntos
Carcinogênese/genética , Hematopoese/genética , Leucemia Mieloide Aguda/genética , Oncogenes/genética , Carcinogênese/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Mutação/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia
7.
Blood ; 128(10): 1418-23, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27389715

RESUMO

The role of somatic JAK2 mutations in clonal myeloproliferative neoplasms (MPNs) is well established. Recently, germ line JAK2 mutations were associated with polyclonal hereditary thrombocytosis and triple-negative MPNs. We studied a patient who inherited 2 heterozygous JAK2 mutations, E846D from the mother and R1063H from the father, and exhibited erythrocytosis and megakaryocytic atypia but normal platelet number. Culture of erythroid progenitors from the patient and his parents revealed hypersensitivity to erythropoietin (EPO). Using cellular models, we show that both E846D and R1063H variants lead to constitutive signaling (albeit much weaker than JAK2 V617F), and both weakly hyperactivate JAK2/STAT5 signaling only in the specific context of the EPO receptor (EPOR). JAK2 E846D exhibited slightly stronger effects than JAK2 R1063H and caused prolonged EPO-induced phosphorylation of JAK2/STAT5 via EPOR. We propose that JAK2 E846D predominantly contributes to erythrocytosis, but is not sufficient for the full pathological phenotype to develop. JAK2 R1063H, with very weak effect on JAK2/STAT5 signaling, is necessary to augment JAK2 activity caused by E846D above a threshold level leading to erythrocytosis with megakaryocyte abnormalities. Both mutations were detected in the germ line of rare polycythemia vera, as well as certain leukemia patients, suggesting that they might predispose to hematological malignancy.


Assuntos
Mutação em Linhagem Germinativa/genética , Janus Quinase 2/genética , Megacariócitos/patologia , Policitemia/congênito , Adolescente , Adulto , Feminino , Humanos , Masculino , Megacariócitos/metabolismo , Pessoa de Meia-Idade , Fosforilação , Policitemia/genética , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Adulto Jovem
8.
Blood ; 127(3): 325-32, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26423830

RESUMO

Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Receptores de Trombopoetina/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Genômica/métodos , Humanos , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/metabolismo , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Receptores de Trombopoetina/metabolismo , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo , Inativação do Cromossomo X/genética
9.
J BUON ; 21(3): 745-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27569099

RESUMO

8p11 myeloproliferative syndrome (EMS) is a very rare clinicopathological entity which is characterized by the appearance of a myeloproliferative neoplasm in the bone marrow, peripheral lymphadenopathy, usually caused by T or B lymphoblastic lymphoma/leukemia, and a reciprocal translocation involving chromosome 8p11. Herein we describe a 22-year-old male patient with unusual clinical presentation of EMS. Namely, he initially presented with prolonged epistaxis. Complete blood count showed elevated hemoglobin (17.7g/dl), thrombocytopenia (98x109/l) and leukocytosis (57x109/l). Bone marrow aspirate and biopsy findings corresponded with the presence of a myeloproliferative neoplasm while cytogenetic analysis revealed t(8;13)(p11q12). After that ZMYM2-FGFR1 in-frame fusion was confirmed at the molecular level. Immediately after establishing the diagnosis of a myeloproliferative neoplasm (MPN) generalized lymphadenopathy was developed. Histopathologic examination of lymph node sample confirmed the diagnosis of a T cell lymphoblastic lymphoma without bone marrow involvement. Four cycles of Hyper CVAD chemotherapy were administered with complete morphological and cytogenetic remission. Four weeks after evaluation, patient developed peripheral blood monocytosis and eosinophilia without bone marrow criteria for acute leukemia. Cytogenetic analysis showed t(8;13) accompanied by complex numerical and structural aberrations. The patient underwent allogeneic stem cell transplantation (allo-SCT) from HLA matched sister and he subsequently achieved complete remission. In conclusion, patients with MPN and translocations involving chromosome 8 need to be carefully evaluated for EMS. However, having in mind the very aggressive clinical course of EMS allo-SCT is the only potential curative option.


Assuntos
Cromossomos Humanos Par 8 , Transtornos Mieloproliferativos/genética , Translocação Genética , Adulto , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA