Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2322321121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38728226

RESUMO

Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.


Assuntos
Escherichia coli , Escherichia coli/fisiologia , Modelos Biológicos , Biodiversidade , Ecossistema
2.
PLoS Comput Biol ; 19(12): e1010868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039342

RESUMO

Competition is ubiquitous in microbial communities, shaping both their spatial and temporal structure and composition. Classical minimal models of competition, such as the Moran model, have been employed in ecology and evolutionary biology to understand the role of fixation and invasion in the maintenance of population diversity. Informed by recent experimental studies of cellular competition in confined spaces, we extend the Moran model to incorporate mechanical interactions between cells that divide within the limited space of a one-dimensional open microchannel. The model characterizes the skewed collective growth of the cells dividing within the channel, causing cells to be expelled at the channel ends. The results of this spatial exclusion model differ significantly from those of its classical well-mixed counterpart. The mean time to fixation of a species is greatly accelerated, scaling logarithmically, rather than algebraically, with the system size, and fixation/extinction probability sharply depends on the species' initial fractional abundance. By contrast, successful takeovers by invasive species, whether through mutation or immigration, are substantially less likely than in the Moran model. We also find that the spatial exclusion tends to attenuate the effects of fitness differences on the fixation times and probabilities. We find that these effects arise from the combination of the quasi-neutral "tug-of-war" diffusion dynamics of the inter-species boundary around an unstable equipoise point and the quasi-deterministic avalanche dynamics away from the fixed point. These results, which can be tested in microfluidic monolayer devices, have implications for the maintenance of species diversity in dense bacterial and cellular ecosystems where spatial exclusion is central to the competition, such as in organized biofilms or intestinal crypts.


Assuntos
Ecossistema , Microbiota , Dinâmica Populacional , Evolução Biológica , Espécies Introduzidas , Modelos Biológicos
3.
Biophys J ; 121(17): 3175-3187, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35927960

RESUMO

Single-molecule counting techniques enable a precise determination of the intracellular abundance and stoichiometry of proteins and macromolecular complexes. These details are often challenging to quantitatively assess yet are essential for our understanding of cellular function. Consider G-protein-coupled receptors-an expansive class of transmembrane signaling proteins that participate in many vital physiological functions making them a popular target for drug development. While early evidence for the role of oligomerization in receptor signaling came from ensemble biochemical and biophysical assays, innovations in single-molecule measurements are now driving a paradigm shift in our understanding of its relevance. Here, we review recent developments in single-molecule counting with a focus on photobleaching step counting and the emerging technique of quantitative single-molecule localization microscopy-with a particular emphasis on the potential for these techniques to advance our understanding of the role of oligomerization in G-protein-coupled receptor signaling.


Assuntos
Nanotecnologia , Receptores Acoplados a Proteínas G , Microscopia de Fluorescência/métodos , Fotodegradação , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
Biophys J ; 120(18): 3901-3910, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437847

RESUMO

In recent years, there have been significant advances in quantifying molecule copy number and protein stoichiometry with single-molecule localization microscopy (SMLM). However, as the density of fluorophores per diffraction-limited spot increases, distinguishing between detection events from different fluorophores becomes progressively more difficult, affecting the accuracy of such measurements. Although essential to the design of quantitative experiments, the dynamic range of SMLM counting techniques has not yet been studied in detail. Here, we provide a working definition of the dynamic range for quantitative SMLM in terms of the relative number of missed localizations or blinks and explore the photophysical and experimental parameters that affect it. We begin with a simple two-state model of blinking fluorophores, then extend the model to incorporate photobleaching and temporal binning by the detection camera. From these models, we first show that our estimates of the dynamic range agree with realistic simulations of the photoswitching. We find that the dynamic range scales inversely with the duty cycle when counting both blinks and localizations. Finally, we validate our theoretical approach on direct stochastic optical reconstruction microscopy (dSTORM) data sets of photoswitching Alexa Fluor 647 dyes. Our results should help guide researchers in designing and implementing SMLM-based molecular counting experiments.


Assuntos
Microscopia , Imagem Individual de Molécula , Corantes Fluorescentes
5.
J Neurosci ; 40(23): 4609-4619, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32350039

RESUMO

Idebenone is a synthetic quinone that on reduction in cells can bypass mitochondrial Complex I defects by donating electrons to Complex III. The drug is used clinically to treat the Complex I disease Leber's hereditary optic neuropathy (LHON), but has been less successful in clinical trials for other neurodegenerative diseases. NAD(P)H:quinone oxidoreductase 1 (NQO1) appears to be the main intracellular enzyme catalyzing idebenone reduction. However, NQO1 is not universally expressed by cells of the brain. Using primary rat cortical cells pooled from both sexes, we tested the hypotheses that the level of endogenous NQO1 activity limits the ability of neurons, but not astrocytes, to use idebenone as an electron donor to support mitochondrial respiration. We then tested the prediction that NQO1 induction by pharmacological activation of the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) enables idebenone to bypass Complex I in cells with poor NQO1 expression. We found that idebenone stimulated respiration by astrocytes but reduced the respiratory capacity of neurons. Importantly, idebenone supported mitochondrial oxygen consumption in the presence of a Complex I inhibitor in astrocytes but not neurons, and this ability was reversed by inhibiting NQO1. Conversely, recombinant NQO1 delivery to neurons prevented respiratory impairment and conferred Complex I bypass activity. Nrf2 activators failed to increase NQO1 in neurons, but carnosic acid induced NQO1 in COS-7 cells that expressed little endogenous enzyme. Carnosic acid-idebenone combination treatment promoted NQO1-dependent Complex I bypass activity in these cells. Thus, combination drug strategies targeting NQO1 may promote the repurposing of idebenone for additional disorders.SIGNIFICANCE STATEMENT Idebenone is used clinically to treat loss of visual acuity in Leber's hereditary optic neuropathy. Clinical trials for several additional diseases have failed. This study demonstrates a fundamental difference in the way idebenone affects mitochondrial respiration in cortical neurons compared with cortical astrocytes. Cortical neurons are unable to use idebenone as a direct mitochondrial electron donor due to NQO1 deficiency. Our results suggest that idebenone behaves as an NQO1-dependent prodrug, raising the possibility that lack of neuronal NQO1 activity has contributed to the limited efficacy of idebenone in neurodegenerative disease treatment. Combination therapy with drugs able to safely induce NQO1 in neurons, as well as other brain cell types, may be able to unlock the neuroprotective therapeutic potential of idebenone or related quinones.


Assuntos
Antioxidantes/farmacologia , Astrócitos/enzimologia , Respiração Celular/fisiologia , Mitocôndrias/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ubiquinona/análogos & derivados , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células COS , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ubiquinona/farmacologia
6.
Annu Rev Microbiol ; 70: 199-213, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27359215

RESUMO

The H-NS (heat-stable nucleoid structuring) protein affects both nucleoid compaction and global gene regulation. H-NS appears to act primarily as a silencer of AT-rich genetic material acquired by horizontal gene transfer. As such, it is key in the regulation of most genes involved in virulence and in adaptation to new environmental niches. Here we review recent progress in understanding the biochemistry of H-NS and how xenogeneic silencing affects bacterial evolution. We highlight the strengths and weaknesses of some of the models proposed in H-NS-mediated nucleoprotein complex formation. Based on recent single-molecule studies, we also propose a novel mode of DNA compaction by H-NS termed intrabridging to explain over two decades of observations of the H-NS molecule.


Assuntos
Bactérias/genética , Genoma Bacteriano , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Inativação Gênica
7.
PLoS Comput Biol ; 16(12): e1008479, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33290385

RESUMO

Single-molecule localization microscopy (SMLM) is a powerful tool for studying intracellular structure and macromolecular organization at the nanoscale. The increasingly massive pointillistic data sets generated by SMLM require the development of new and highly efficient quantification tools. Here we present FOCAL3D, an accurate, flexible and exceedingly fast (scaling linearly with the number of localizations) density-based algorithm for quantifying spatial clustering in large 3D SMLM data sets. Unlike DBSCAN, which is perhaps the most commonly employed density-based clustering algorithm, an optimum set of parameters for FOCAL3D may be objectively determined. We initially validate the performance of FOCAL3D on simulated datasets at varying noise levels and for a range of cluster sizes. These simulated datasets are used to illustrate the parametric insensitivity of the algorithm, in contrast to DBSCAN, and clustering metrics such as the F1 and Silhouette score indicate that FOCAL3D is highly accurate, even in the presence of significant background noise and mixed populations of variable sized clusters, once optimized. We then apply FOCAL3D to 3D astigmatic dSTORM images of the nuclear pore complex (NPC) in human osteosaracoma cells, illustrating both the validity of the parameter optimization and the ability of the algorithm to accurately cluster complex, heterogeneous 3D clusters in a biological dataset. FOCAL3D is provided as an open source software package written in Python.


Assuntos
Imageamento Tridimensional/métodos , Imagem Individual de Molécula/métodos , Algoritmos , Análise por Conglomerados , Conjuntos de Dados como Assunto , Humanos , Poro Nuclear/ultraestrutura , Osteossarcoma/ultraestrutura , Linguagens de Programação , Software , Células Tumorais Cultivadas
8.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31481544

RESUMO

The heat-stable nucleoid-structuring (H-NS) protein is a global transcriptional regulator implicated in coordinating the expression of over 200 genes in Escherichia coli, including many involved in adaptation to osmotic stress. We have applied superresolved microscopy to quantify the intracellular and spatial reorganization of H-NS in response to a rapid osmotic shift. We found that H-NS showed growth phase-dependent relocalization in response to hyperosmotic shock. In stationary phase, H-NS detached from a tightly compacted bacterial chromosome and was excluded from the nucleoid volume over an extended period of time. This behavior was absent during rapid growth but was induced by exposing the osmotically stressed culture to a DNA gyrase inhibitor, coumermycin. This chromosomal compaction/H-NS exclusion phenomenon occurred in the presence of either potassium or sodium ions and was independent of the presence of stress-responsive sigma factor σS and of the H-NS paralog StpA.IMPORTANCE The heat-stable nucleoid-structuring (H-NS) protein coordinates the expression of over 200 genes in E. coli, with a large number involved in both bacterial virulence and drug resistance. We report on the novel observation of a dynamic compaction of the bacterial chromosome in response to exposure to high levels of salt. This stress response results in the detachment of H-NS proteins and their subsequent expulsion to the periphery of the cells. We found that this behavior is related to mechanical properties of the bacterial chromosome, in particular, to how tightly twisted and coiled is the chromosomal DNA. This behavior might act as a biomechanical response to stress that coordinates the expression of genes involved in adapting bacteria to a salty environment.


Assuntos
Cromossomos Bacterianos/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Pressão Osmótica , Cloreto de Potássio/farmacologia , Adaptação Fisiológica , Aminocumarinas/farmacologia , Cátions Monovalentes , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Potássio/metabolismo , Transporte Proteico/efeitos dos fármacos , Fator sigma/genética , Fator sigma/metabolismo , Sódio/metabolismo , Inibidores da Topoisomerase II/farmacologia , Transcrição Gênica
9.
Biophys J ; 112(9): 1777-1785, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494949

RESUMO

Superresolved localization microscopy has the potential to serve as an accurate, single-cell technique for counting the abundance of intracellular molecules. However, the stochastic blinking of single fluorophores can introduce large uncertainties into the final count. Here we provide a theoretical foundation for applying superresolved localization microscopy to the problem of molecular counting based on the distribution of blinking events from a single fluorophore. We also show that by redundantly tagging single molecules with multiple, blinking fluorophores, the accuracy of the technique can be enhanced by harnessing the central limit theorem. The coefficient of variation then, for the number of molecules M estimated from a given number of blinks B, scales like ∼1/Nl, where Nl is the mean number of labels on a target. As an example, we apply our theory to the challenging problem of quantifying the cell-to-cell variability of plasmid copy number in bacteria.


Assuntos
Microscopia/métodos , Imagem Molecular/métodos , Bactérias/genética , Bactérias/virologia , Teorema de Bayes , Modelos Teóricos , Plasmídeos/genética , Processos Estocásticos
10.
Biophys J ; 111(3): 467-479, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27508432

RESUMO

The maintenance of high-copy number plasmids within bacteria had been commonly thought to result from free diffusion and random segregation. Recent microscopy experiments, however, observed high-copy number plasmids clustering into discrete foci, which seemed to contradict this model, and hinted at an undiscovered active mechanism, as often found in low-copy number plasmids. We recently investigated the cellular organization of a ColE1-derivative plasmid in Escherichia coli bacteria using quantitative superresolved microscopy based on single-molecule localization in combination with single-molecule fluorescence in situ hybridization (smFISH). We observed that many of the plasmids aggregated into large clusters, although most of the plasmids were randomly distributed throughout the bacteria, minus an excluded volume about the chromosomal DNA. Our results indicate that neither of the previous models completely encompasses the behavior of high-copy number plasmids. We also found many plasmids within the chromosomal volume, providing further evidence that the nucleoid does not fully exclude DNA and RNA.


Assuntos
DNA Bacteriano/genética , Dosagem de Genes , Microscopia , Plasmídeos/genética , Escherichia coli/genética , Hibridização in Situ Fluorescente , RNA Bacteriano/genética
11.
Nucleic Acids Res ; 42(19): 11921-7, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25274732

RESUMO

The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.


Assuntos
Proteínas de Bactérias/metabolismo , Empacotamento do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Bactérias/genética , Fenômenos Biomecânicos , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Mutação
12.
Biophys J ; 108(12): 2759-66, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26083913

RESUMO

Optical tweezers have revolutionized our understanding of the microscopic world. Axial optical tweezers, which apply force to a surface-tethered molecule by directly moving either the trap or the stage along the laser beam axis, offer several potential benefits when studying a range of novel biophysical phenomena. This geometry, although it is conceptually straightforward, suffers from aberrations that result in variation of the trap stiffness when the distance between the microscope coverslip and the trap focus is being changed. Many standard techniques, such as back-focal-plane interferometry, are difficult to employ in this geometry due to back-scattered light between the bead and the coverslip, whereas the noise inherent in a surface-tethered assay can severely limit the resolution of an experiment. Because of these complications, precision force spectroscopy measurements have adapted alternative geometries such as the highly successful dumbbell traps. In recent years, however, most of the difficulties inherent in constructing a precision axial optical tweezers have been solved. This review article aims to inform the reader about recent progress in axial optical trapping, as well as the potential for these devices to perform innovative biophysical measurements.


Assuntos
Pinças Ópticas , Análise Espectral/instrumentação , Análise Espectral/métodos
13.
Opt Express ; 23(22): 28857-67, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561154

RESUMO

Conventional optical tweezers suffer from several complications when applying axial forces to surface-tethered molecules. Aberrations from the refractive-index mismatch between an oil-immersion objective's medium and the aqueous trapping environment both shift the trap centre and degrade the trapping strength with focal depth. Furthermore, interference effects from back-scattered light make it difficult to use back-focal-plane interferometry for high-bandwidth position detection. Holographic optical tweezers were employed to correct for aberrations to achieve a constant axial stiffness and modulate artifacts from backscattered light. Once the aberrations are corrected for, the trap height can be precisely determined from either the back-scattered light or Brenner's formula.

14.
Nano Lett ; 12(5): 2515-9, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463480

RESUMO

We have developed a correlation microscopy technique to follow the dynamics of quantum dot labeled DNA within living cells. The temporal correlation functions of the labels reflect the fluctuations of the DNA nanoprobe as a result of its interactions with the cellular environment. They provide a sensitive measure for the length of the probe on the scale of a persistence length (∼50 nm) and reveal strong nonthermal dynamics of the cell. These results pave the way for dynamic observations of DNA conformational changes in vivo.


Assuntos
Cor , Sondas de DNA , Nanotecnologia
15.
Front Immunol ; 14: 1236514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928542

RESUMO

Background: Allogeneic hematopoietic stem cell transplant remains the most effective strategy for patients with high-risk acute myeloid leukemia (AML). Leukemia-specific neoantigens presented by the major histocompatibility complexes (MHCs) are recognized by the T cell receptors (TCR) triggering the graft-versus-leukemia effect. A unique TCR signature is generated by a complex V(D)J rearrangement process to form TCR capable of binding to the peptide-MHC. The generated TCR repertoire undergoes dynamic changes with disease progression and treatment. Method: Here we applied two different computational tools (TRUST4 and MIXCR) to extract the TCR sequences from RNA-seq data from The Cancer Genome Atlas (TCGA) and examine the association between features of the TCR repertoire in adult patients with AML and their clinical and molecular characteristics. Results: We found that only ~30% of identified TCR CDR3s were shared by the two computational tools. Yet, patterns of TCR associations with patients' clinical and molecular characteristics based on data obtained from either tool were similar. The numbers of unique TCR clones were highly correlated with patients' white blood cell counts, bone marrow blast percentage, and peripheral blood blast percentage. Multivariable regressions of TCRA and TCRB median normalized number of unique clones with mutational status of AML patients using TRUST4 showed significant association of TCRA or TCRB with WT1 mutations, WBC count, %BM blast, and sex (adjusted in TCRB model). We observed a correlation between TCRA/B number of unique clones and the expression of T cells inhibitory signal genes (TIGIT, LAG3, CTLA-4) and foxp3, but not IL2RA, CD69 and TNFRSF9 suggestive of exhausted T cell phenotypes in AML. Conclusion: Benchmarking of computational tools is needed to increase the accuracy of the identified clones. The utilization of RNA-seq data enables identification of highly abundant TCRs and correlating these clones with patients' clinical and molecular characteristics. This study further supports the value of high-resolution TCR-Seq analyses to characterize the TCR repertoire in patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Medula Óssea
16.
Sci Rep ; 13(1): 11582, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463909

RESUMO

While historically viewed as an insulin insensitive organ, it is now accepted that insulin has a role in brain physiology. Changes in brain insulin and IGF1 signaling have been associated with neurological diseases, however the molecular factors regulating brain insulin sensitivity remain uncertain. In this study, we proposed that a recently described protein, termed Inceptor, may play a role in brain insulin and IGF1 resistance. We studied Inceptor in healthy and diseased nervous tissue to understand the distribution of the protein and examine how it may change in states of insulin resistance. We found that Inceptor is in fact present in cerebellum, hippocampus, hypothalamus, and cortex of the brain in neurons, with higher levels in cortex of female compared to male mice. We also confirmed that Inceptor colocalized with IR and IGF1R in brain. We saw little difference in insulin receptor signaling following Inceptor knockdown in neuron cultures, or in Inceptor levels with high-fat diet in mouse or Alzheimer's disease in mouse or human tissue. These results all provide significant advancements to our understanding of Inceptor in the brain. PROTOCOL REGISTRATION: The Stage 1 registered report manuscript was accepted-in-principle on 9 August 2022. This manuscript was registered through Open Science Forum (OSF) on 24 August 2022 and is available here: https://osf.io/9q8sw .


Assuntos
Doença de Alzheimer , Resistência à Insulina , Masculino , Feminino , Camundongos , Humanos , Animais , Encéfalo/metabolismo , Insulina/metabolismo , Hipocampo/metabolismo , Doença de Alzheimer/metabolismo , Receptor de Insulina/metabolismo
17.
Mult Scler Relat Disord ; 58: 103499, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35030368

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic neuroinflammatory disorder, in which activated immune cells directly or indirectly induce demyelination and axonal degradation. Inflammatory stimuli also change the phenotype of astrocytes, making them neurotoxic. The resulting 'toxic astrocyte' phenotype has been observed in animal models of neuroinflammation and in MS lesions. Proteins secreted by toxic astrocytes are elevated in the cerebrospinal fluid (CSF) of MS patients and reproducibly correlate with the rates of accumulation of neurological disability and brain atrophy. This suggests a pathogenic role for neurotoxic astrocytes in MS. METHODS: Here, we applied a commercially available library of small molecules that are either Food and Drug Administration-approved or in clinical development to an in vitro model of toxic astrogliosis to identify drugs and signaling pathways that inhibit inflammatory transformation of astrocytes to a neurotoxic phenotype. RESULTS: Inhibitors of three pathways related to the endoplasmic reticulum stress: (1) proteasome, (2) heat shock protein 90 and (3) mammalian target of rapamycin reproducibly decreased inflammation-induced conversion of astrocytes to toxic phenotype. Dantrolene, an anti-spasticity drug that inhibits calcium release through ryanodine receptors expressed in the endoplasmic reticulum of central nervous system cells, also exerted inhibitory effect at in vivo achievable concentrations. Finally, we established CSF SERPINA3 as a relevant pharmacodynamic marker for inhibiting toxic astrocytes in clinical trials. CONCLUSION: Drug library screening provides mechanistic insight into the generation of toxic astrocytes and identifies candidates for immediate proof-of-principle clinical trial(s).


Assuntos
Esclerose Múltipla , Preparações Farmacêuticas , Animais , Astrócitos/patologia , Sistema Nervoso Central/metabolismo , Gliose/tratamento farmacológico , Humanos , Esclerose Múltipla/patologia , Preparações Farmacêuticas/metabolismo
18.
Mol Metab ; 52: 101234, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33845179

RESUMO

BACKGROUND: The brain was once thought of as an insulin-insensitive organ. We now know that the insulin receptor is present throughout the brain and serves important functions in whole-body metabolism and brain function. Brain insulin signaling is involved not only in brain homeostatic processes but also neuropathological processes such as cognitive decline and Alzheimer's disease. SCOPE OF REVIEW: In this review, we provide an overview of insulin signaling within the brain and the metabolic impact of brain insulin resistance and discuss Alzheimer's disease, one of the neurologic diseases most closely associated with brain insulin resistance. MAJOR CONCLUSIONS: While brain insulin signaling plays only a small role in central nervous system glucose regulation, it has a significant impact on the brain's metabolic health. Normal insulin signaling is important for mitochondrial functioning and normal food intake. Brain insulin resistance contributes to obesity and may also play an important role in neurodegeneration.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Receptor de Insulina/metabolismo , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Glicemia/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Insulina/administração & dosagem , Insulina/farmacocinética
19.
Bioinform Adv ; 1(1): vbab032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36700088

RESUMO

Motivation: Single-molecule localization microscopy (SMLM) is a super-resolution technique capable of rendering nanometer scale images of cellular structures. Recently, much effort has gone into developing algorithms for extracting quantitative features from SMLM datasets, such as the abundance and stoichiometry of macromolecular complexes. These algorithms often require knowledge of the complicated photophysical properties of photoswitchable fluorophores. Results: Here, we develop a calibration-free approach to quantitative SMLM built upon the observation that most photoswitchable fluorophores emit a geometrically distributed number of blinks before photobleaching. From a statistical model of a mixture of monomers, dimers and trimers, the method employs an adapted expectation-maximization algorithm to learn the protomer fractions while simultaneously determining the single-fluorophore blinking distribution. To illustrate the utility of our approach, we benchmark it on both simulated datasets and experimental datasets assembled from SMLM images of fluorescently labeled DNA nanostructures. Availability and implementation: An implementation of our algorithm written in Python is available at: https://www.utm.utoronto.ca/milsteinlab/resources/Software/MMCode/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

20.
Small Methods ; 5(5): e2001180, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928085

RESUMO

An ultrastable, highly dense single-molecule assay ideal for observing protein-DNA interactions is demonstrated. Stable click tethered particle motion leverages next generation click-chemistry to achieve an ultrahigh density of surface tethered reporter particles, and has low non-specific interactions, is stable at elevated temperatures to at least 45 °C, and is compatible with Mg2+ , an important ionic component of many regulatory protein-DNA interactions. Prepared samples remain stable, with little degradation, for >6 months in physiological buffers. These improvements enable the authors to study previously inaccessible sequence and temperature-dependent effects on DNA binding by the bacterial protein, histone-like nucleoid-structuring protein, a global transcriptional regulator found in Escherichia coli. This greatly improved assay can directly be translated to accelerate existing tethered particle-based, single-molecule biosensing applications.


Assuntos
Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Bactérias/química , DNA/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Histonas/metabolismo , Ligação Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA