Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102821, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563857

RESUMO

Tauopathies are neurodegenerative diseases caused by pathologic misfolded tau protein aggregation in the nervous system. Population studies implicate EIF2AK3 (eukaryotic translation initiation factor 2 alpha kinase 3), better known as PERK (protein kinase R-like endoplasmic reticulum kinase), as a genetic risk factor in several tauopathies. PERK is a key regulator of intracellular proteostatic mechanisms-unfolded protein response and integrated stress response. Previous studies found that tauopathy-associated PERK variants encoded functional hypomorphs with reduced signaling in vitro. But, it remained unclear how altered PERK activity led to tauopathy. Here, we chemically or genetically modulated PERK signaling in cell culture models of tau aggregation and found that PERK pathway activation prevented tau aggregation, whereas inhibition exacerbated tau aggregation. In primary tauopathy patient brain tissues, we found that reduced PERK signaling correlated with increased tau neuropathology. We found that tauopathy-associated PERK variants targeted the endoplasmic reticulum luminal domain; and two of these variants damaged hydrogen bond formation. Our studies support that PERK activity protects against tau aggregation and pathology. This may explain why people carrying hypomorphic PERK variants have increased risk for developing tauopathies. Finally, our studies identify small-molecule augmentation of PERK signaling as an attractive therapeutic strategy to treat tauopathies by preventing tau pathology.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas , eIF-2 Quinase , Proteínas tau , Humanos , Suscetibilidade a Doenças , eIF-2 Quinase/química , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Mutação , Fatores de Risco , Proteínas tau/química , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia
2.
Am J Pathol ; 193(11): 1721-1739, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36535406

RESUMO

Activating transcription factor 6 (ATF6), a key regulator of the unfolded protein response, plays a key role in endoplasmic reticulum function and protein homeostasis. Variants of ATF6 that abrogate transcriptional activity cause morphologic and molecular defects in cones, clinically manifesting as the human vision loss disease achromatopsia (ACHM). ATF6 is expressed in all retinal cells. However, the effect of disease-associated ATF6 variants on other retinal cell types remains unclear. Herein, this was investigated by analyzing bulk RNA-sequencing transcriptomes from retinal organoids generated from patients with ACHM, carrying homozygous loss-of-function ATF6 variants. Marked dysregulation in mitochondrial respiratory complex gene expression and disrupted mitochondrial morphology in ACHM retinal organoids were identified. This indicated that loss of ATF6 leads to previously unappreciated mitochondrial defects in the retina. Next, gene expression from control and ACHM retinal organoids were compared with transcriptome profiles of seven major retinal cell types generated from recent single-cell transcriptomic maps of nondiseased human retina. This indicated pronounced down-regulation of cone genes and up-regulation in Müller glia genes, with no significant effects on other retinal cells. Overall, the current analysis of ACHM patient retinal organoids identified new cellular and molecular phenotypes in addition to cone dysfunction: activation of Müller cells, increased endoplasmic reticulum stress, disrupted mitochondrial structure, and elevated respiratory chain activity gene expression.


Assuntos
Retina , Células Fotorreceptoras Retinianas Cones , Humanos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Estresse do Retículo Endoplasmático/genética , Organoides/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 108(8): 3371-6, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300878

RESUMO

Despite its clinical importance, the mechanisms that mediate or generate itch are poorly defined. The identification of pruritic compounds offers insight into understanding the molecular and cellular basis of itch. Imiquimod (IQ) is an agonist of Toll-like receptor 7 (TLR7) used to treat various infectious skin diseases such as genital warts, keratosis, and basal cell carcinoma. Itch is reportedly one of the major side effects developed during IQ treatments. We found that IQ acts as a potent itch-evoking compound (pruritogen) in mice via direct excitation of sensory neurons. Combined studies of scratching behavior, patch-clamp recording, and Ca(2+) response revealed the existence of a unique intracellular mechanism, which is independent of TLR7 as well as different from the mechanisms exploited by other well-characterized pruritogens. Nevertheless, as for other pruritogens, IQ requires the presence of transient receptor potential vanilloid 1 (TRPV1)-expressing neurons for itch-associated responses. Our data provide evidence supporting the hypothesis that there is a specific subset of TRPV1-expressing neurons that is equipped with diverse intracellular mechanisms that respond to histamine, chloroquine, and IQ.


Assuntos
Aminoquinolinas/farmacologia , Neurônios/química , Prurido/metabolismo , Canais de Cátion TRPV/análise , Aminoquinolinas/efeitos adversos , Animais , Cloroquina/farmacologia , Histamina/farmacologia , Imiquimode , Indutores de Interferon , Camundongos , Prurido/induzido quimicamente , Prurido/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA