Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2006): 20231158, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700650

RESUMO

The vertebrate pharynx is a key embryonic structure with crucial importance for the metameric organization of the head and face. The pharynx is primarily built upon progressive formation of paired pharyngeal pouches that typically develop in post-oral (mandibular, hyoid and branchial) domains. However, in the early embryos of non-teleost fishes, we have previously identified pharyngeal pouch-like outpocketings also in the pre-oral domain of the cranial endoderm. This pre-oral gut (POG) forms by early pouching of the primitive gut cavity, followed by the sequential formation of typical (post-oral) pharyngeal pouches. Here, we tested the pharyngeal nature of the POG by analysing expression patterns of selected core pharyngeal regulatory network genes in bichir and sturgeon embryos. Our comparison revealed generally shared expression patterns, including Shh, Pax9, Tbx1, Eya1, Six1, Ripply3 or Fgf8, between early POG and post-oral pharyngeal pouches. POG thus shares pharyngeal pouch-like morphogenesis and a gene expression profile with pharyngeal pouches and can be regarded as a pre-mandibular pharyngeal pouch. We further suggest that pre-mandibular pharyngeal pouches represent a plesiomorphic vertebrate trait inherited from our ancestor's pharyngeal metameric organization, which is incorporated in the early formation of the pre-chordal plate of vertebrate embryos.


Assuntos
Mandíbula , Crânio , Animais , Osso Hioide , Morfogênese
2.
Nature ; 547(7662): 209-212, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28678781

RESUMO

Despite the wide variety of adaptive modifications in the oral and facial regions of vertebrates, their early oropharyngeal development is considered strictly uniform. It involves sequential formation of the mouth and pharyngeal pouches, with ectoderm outlining the outer surface and endoderm the inner surface, as a rule. At the extreme anterior domain of vertebrate embryos, the ectoderm and endoderm directly juxtapose and initial development of this earliest ecto-endoderm interface, the primary mouth, typically involves ectodermal stomodeal invagination that limits the anterior expansion of the foregut endoderm. Here we present evidence that in embryos of extant non-teleost fishes, oral (stomodeal) formation is preceded by the development of prominent pre-oral gut diverticula (POGD) between the forebrain and roof of the forming mouth. Micro-computed tomography (micro-CT) imaging of bichir, sturgeon and gar embryos revealed that foregut outpocketing at the pre-oral domain begins even before the sequential formation of pharyngeal pouches. The presence of foregut-derived cells in the front of the mouth was further confirmed by in vivo experiments that allowed specific tracing of the early endodermal lining. We show that POGD in sturgeons contribute to the orofacial surface of their larvae, comprising oral teeth, lips, and sensory barbels. To our knowledge, this is the first thorough evidence for endodermal origin of external craniofacial structures in any vertebrate. In bichir and gar embryos, POGD form prominent cranial adhesive organs that are characteristic of the ancient bauplan of free-living chordate larvae. POGD hence seem arguably to be ancestral for all ray-finned fishes, and their topology, pharyngeal-like morphogenesis and gene expression suggest that they are evolutionarily related to the foregut-derived diverticula of early chordate and hemichordate embryos. The formation of POGD might thus represent an ancestral developmental module with deep deuterostome origins.


Assuntos
Sistema Digestório/embriologia , Endoderma/embriologia , Peixes/anatomia & histologia , Peixes/embriologia , Desenvolvimento Maxilofacial , Boca/embriologia , Animais , Peixes/classificação , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Desenvolvimento Maxilofacial/genética , Filogenia , Crânio/embriologia , Dente/embriologia , Microtomografia por Raio-X
3.
Front Cell Dev Biol ; 12: 1327924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562141

RESUMO

In electroreceptive jawed vertebrates, embryonic lateral line placodes give rise to electrosensory ampullary organs as well as mechanosensory neuromasts. Previous reports of shared gene expression suggest that conserved mechanisms underlie electroreceptor and mechanosensory hair cell development and that electroreceptors evolved as a transcriptionally related "sister cell type" to hair cells. We previously identified only one transcription factor gene, Neurod4, as ampullary organ-restricted in the developing lateral line system of a chondrostean ray-finned fish, the Mississippi paddlefish (Polyodon spathula). The other 16 transcription factor genes we previously validated in paddlefish were expressed in both ampullary organs and neuromasts. Here, we used our published lateral line organ-enriched gene-set (arising from differential bulk RNA-seq in late-larval paddlefish), together with a candidate gene approach, to identify 25 transcription factor genes expressed in the developing lateral line system of a more experimentally tractable chondrostean, the sterlet (Acipenser ruthenus, a small sturgeon), and/or that of paddlefish. Thirteen are expressed in both ampullary organs and neuromasts, consistent with conservation of molecular mechanisms. Seven are electrosensory-restricted on the head (Irx5, Irx3, Insm1, Sp5, Satb2, Mafa and Rorc), and five are the first-reported mechanosensory-restricted transcription factor genes (Foxg1, Sox8, Isl1, Hmx2 and Rorb). However, as previously reported, Sox8 is expressed in ampullary organs as well as neuromasts in a catshark (Scyliorhinus canicula), suggesting the existence of lineage-specific differences between cartilaginous and ray-finned fishes. Overall, our results support the hypothesis that ampullary organs and neuromasts develop via largely conserved transcriptional mechanisms, and identify multiple transcription factors potentially involved in the formation of electrosensory versus mechanosensory lateral line organs.

4.
Acta Chim Slov ; 57(1): 150-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24061667

RESUMO

In order to produce fermentation broth for downstream recovery, a total of 15 fermentations were done in a 15 m3 and two 7.5 m3 vessels. Apart from the evaluation of fermentation yield and productivity, information on the heat and mass transfer coefficients were required for design purposes. The focus of the fermentation study was therefore directed to obtain information on broth rheology, heat transfer aspects and considerations. Broth rheology was found to deviate from Newtonian behavior with increasing biomass concentration. Using axial flow impellers, rather than radial flow producing Rushton turbines, significantly improved heat transfer in this study.

5.
Carbohydr Polym ; 212: 395-402, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30832872

RESUMO

Dynamic light scattering (DLS), viscosity and surface tension (SFT) measurements were used to characterize influence of salts containing ions of Hofmeister series (Na2SO4, (NH4)2SO4, NaSCN, NH4SCN and NaCl) on the behaviour of hyaluronan in diluted solutions at a temperature range of 15-45 °C. The results of the study showed that chaotropic and kosmotropic ions notably influenced the folding and unfolding of hyaluronan coils due to interactions between a respective ion and hydrophilic or hydrophobic patches present in the backbone of the polymer chains. This was mainly proved by viscosity and light scattering measurements. The temperature dependence of the hydrodynamic diameter of the hyaluronan coil determined by DLS demonstrated that combinations of chaotropic and kosmotropic ions in one salt (NaCl, NaSCN and (HN4)2SO4) can stabilize the size of the coil in a wide range of temperatures. Tensiometry measurements indicated that certain types of ions present in the solution caused an unfolding of the hyaluronan coils, leading to a decrease of SFT.

6.
Elife ; 82019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30910008

RESUMO

In most vertebrates, pharyngeal arches form in a stereotypic anterior-to-posterior progression. To gain insight into the mechanisms underlying evolutionary changes in pharyngeal arch development, here we investigate embryos and larvae of bichirs. Bichirs represent the earliest diverged living group of ray-finned fishes, and possess intriguing traits otherwise typical for lobe-finned fishes such as ventral paired lungs and larval external gills. In bichir embryos, we find that the anteroposterior way of formation of cranial segments is modified by the unique acceleration of the entire hyoid arch segment, with earlier and orchestrated development of the endodermal, mesodermal, and neural crest tissues. This major heterochronic shift in the anteroposterior developmental sequence enables early appearance of the external gills that represent key breathing organs of bichir free-living embryos and early larvae. Bichirs thus stay as unique models for understanding developmental mechanisms facilitating increased breathing capacity.


Assuntos
Região Branquial/embriologia , Peixes/embriologia , Brânquias/embriologia , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento
7.
ACS Appl Mater Interfaces ; 9(7): 6472-6481, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28106978

RESUMO

A new approach to polystyrene surface treatment via the time-sequenced dispensing of good and poor solvent mixtures on the rotating surface of treated substrate is presented in this study. It is demonstrated that the variation of the sequencing together with other variables (e.g., temperature and solvent concentration) affects the size and depth of pores evolving on the polystyrene surface. A model of the surface pore creation, associated with the viscoelastic phase separation, surface tension, and secondary flows caused by temperature variations and the rapid evaporation of the good solvent is proposed. Experimental results of profilometric, goniometric, and optical measurements show that this approach enables the simple and quick preparation of surfaces with various numbers, diameters, and depths of individual pores, which ultimately affects not only the wetting characteristics of the surfaces but also the fate of cells cultivated there. The presented method allows the easy preparation of a large number of structured substrates for effective cell cultivation and proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA