Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Am Chem Soc ; 146(23): 15666-15671, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38830196

RESUMO

Examples of stable 3d transition metal methylidene complexes are extremely rare. Here we report an isolable and stable vanadium methylidene complex, [(PNP)V(=NAr)(=CH2)] (PNP = N[2-PiPr2-4-methylphenyl]-, Ar = 2,6-iPr2C6H3), via H atom transfer (HAT) from [(PNP)V(NHAr)(CH3)] or [(PNP)V(=NAr)(CH3)] using two or one equivalents of the TEMPO radical (TEMPO = (2,2,6,6-tetramethylpiperidin-1-yl)oxyl), respectively. Alternatively, the vanadium methylidene moiety can also be formed via the treatment of transient [(PNP)V=NAr] with the Wittig reagent, H2CPPh3. Structural and spectroscopic analysis, including 13C enriched labeling of the methylidene ligand, unequivocally confirmed the terminal nature of a rare 3d methylidene complex, featuring a V=CH2 bond distance of 1.908(2) Å and a highly downfield 13C NMR spectral shift at 298 ppm. In the absence of the ylide, intermediate [(PNP)V=NAr] activates dinitrogen to form an end-on bridging N2 complex, [(PNP)V(=NAr)]2(µ2-η1:η1-N2), having a singlet ground state. Complex [(PNP)V(=NAr)(=CH2)] reacts with H3COTf to form [(PNP)V(=NAr)(OTf)], accompanied by the release of ethylene as evidenced by 1H NMR spectroscopy, and reactivity studies suggest a ß-hydride elimination pathway.

2.
J Am Chem Soc ; 146(6): 3609-3614, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38290427

RESUMO

We introduce the arsenido ligand onto the TiIV ion, yielding a remarkably covalent Ti≡As bond and the parent arsinidene Ti═AsH moiety. An anionic arsenido ligand is assembled via reductive decarbonylation involving the discrete TiII salt [K(cryptand)][(PN)2TiCl] (1) (cryptand = 222-Kryptofix) and Na(OCAs)(dioxane)1.5 in thf/toluene to produce the mixed alkali ate-complex [(PN)2Ti(As)]2(µ2-KNa(thf)2) (2) and the discrete salt [K(cryptand)][(PN)2Ti≡As] (3) featuring a terminal Ti≡As ligand. Protonation of 2 or 3 with various weak acids cleanly forms the parent arsinidene [(PN)2Ti═AsH] (4), which upon deprotonation with KCH2Ph in thf generates the more symmetric anionic arsenido [(PN)2Ti(As){µ2-K(thf)2}]2 (5). Experimental and computational studies suggest the pKa of 4 to be ∼23, and the bond orders in 2, 3, and 5 are all in the range of a Ti≡As triple bond, with decreasing bond order in 4.

3.
J Am Chem Soc ; 146(5): 2997-3009, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38272018

RESUMO

Reported is the catalytic cyclic polymer synthesis by a 3d transition metal complex: a V(V) alkylidyne, [(dBDI)V≡CtBu(OEt2)] (1-OEt2), supported by the deprotonated ß-diketiminate dBDI2- (dBDI2- = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6-iPr2C6H3). Complex 1-OEt2 is a precatalyst for the polymerization of phenylacetylene (PhCCH) to give cyclic poly(phenylacetylene) (c-PPA), whereas its precursor, complex [(BDI)V≡CtBu(OTf)] (2-OTf; BDI- = [ArNC(CH3)]2CH, Ar = 2,6-iPr2C6H3, OTf = OSO2CF3), and the zwitterion [((C6F5)3B-dBDI)V≡CtBu(OEt2)] (3-OEt2) exhibit low catalytic activity despite having a neopentylidyne ligand. Cyclic polymer topologies were verified by size-exclusion chromatography (SEC) and intrinsic viscosity studies. A component of the mechanism of the cyclic polymerization reaction was probed by isolation and full characterization of 4- and 6-membered metallacycles as model intermediates. Metallacyclobutadiene (MCBD) and deprotiometallacyclobutadiene (dMCBD) complexes (dBDI)V[C(tBu)C(H)C(tBu)] (4-tBu) and (BDI)V[C(tBu)CC(Mes)] (5-Mes), respectively, were synthesized upon reaction with bulkier alkynes, tBu- (tBuCCH) and Mes-acetylene (MesCCH), with 1-OEt2. Furthermore, the reaction of the conjugate acid of 1-OEt2, [(BDI)V≡CtBu(OTf)] (2-OTf), with the conjugated base of phenylacetylene, lithium phenylacetylide (LiCCPh), yields the doubly deprotio-metallacycle complex, [Li(THF)4]{(BDI)V[C(Ph)CC(tBu)CC(Ph)]} (6). Protonation of the doubly deprotio-metallacycle complex 6 yields 6-H+, a catalytically active species toward the polymerization of PhCCH, for which the polymers were also confirmed to be cyclic by SEC studies. Computational mechanistic studies complement the experimental observations and provide insight into the mechanism of cyclic polymer growth. The noninnocence of the supporting dBDI2- ligand and its role in proton shuttling to generate deprotiometallacyclobutadiene (dMCBD) complexes that proposedly culminate in the formation of catalytically active V(III) species are also discussed. This work demonstrates how a dMCBD moiety can react with terminal alkynes to form cyclic polyalkynes.

4.
Angew Chem Int Ed Engl ; 63(21): e202401433, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38433099

RESUMO

We introduce the heterocumulene ligand [(Ad)NCC(tBu)]- (Ad=1-adamantyl (C10H15), tBu=tert-butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid-base chemistry, which promotes an unprecedented spin-state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1-adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI-=ArNC(CH3)CHC(CH3)NAr), Ar=2,6-iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2-=ArNC(CH3)CHC(CH2)NAr). Complex A reacts with C≡NAd, to generate the high-spin [VIII] complex with a κ1-N-ynamide ligand, [(BDI)V{κ1-N-(Ad)NCC(tBu)}(OTf)] (1). Conversely, B reacts with C≡NAd to generate a low-spin [VIII] diamagnetic complex having a chelated κ2-C,N-azaalleneyl ligand, [(dBDI)V{κ2-N,C-(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of 2 and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between 1 and 2.

5.
Angew Chem Int Ed Engl ; 63(8): e202318956, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38109203

RESUMO

Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2 -C,C-(Me3 SiC3 SiMe3 )}] (2-M) (BDI=[ArNC(CH3 )]2 CH- , Ar=2,6-i Pr2 C6 H3 ; M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2 ] (1-M, M=Ti, V) with 1,3-dilithioallene [Li2 (Me3 SiC3 SiMe3 )]. Complexes 2-M have been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size-exclusion chromatography (SEC) and intrinsic viscosity studies. Two-electron oxidation of 2-V with nitrous oxide (N2 O) cleanly yields a [VV ] alkylidene-alkynyl oxo complex [(BDI)V(=O){κ1 -C-(=C(SiMe3 )CC(SiMe3 ))}] (3), which lends support for how this scaffold in 2-M might be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3-dianionic allene as a segue into M-C multiple bonds.

6.
Angew Chem Int Ed Engl ; : e202404601, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619509

RESUMO

The nitrido-ate complex [(PN)2Ti(N){µ2-K(OEt2)}]2 (1) (PN-=(N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2) reductively couples CO and isocyanides in the presence of DME or cryptand (Kryptofix222), to form rare, five-coordinate TiII complexes having a linear cumulene motif, [K(L)][(PN)2Ti(NCE)] (E=O, L=Kryptofix222, (2); E=NAd, L=3 DME, (3); E=NtBu, L=3 DME, (4); E=NAd, L=Kryptofix222, (5)). Oxidation of 2-5 with [Fc][OTf] afforded an isostructural TiIII center containing a neutral cumulene, [(PN)2Ti(NCE)] (E=O, (6); E=NAd (7), NtBu (8)) and characterization by CW X-band EPR spectroscopy, revealed unpaired electron to be metal centric. Moreover, 1e- reduction of 6 and 7 in the presence of Kryptofix222cleanly reformed corresponding discrete TiII complexes 2 and 5, which were further characterized by solution magnetization measurements and high-frequency and -field EPR (HFEPR) spectroscopy. Furthermore, oxidation of 7 with [Fc*][B(C6F5)4] resulted in a ligand disproportionated TiIV complex having transoid carbodiimides, [(PN)2Ti(NCNAd)2] (9). Comparison of spectroscopic, structural, and computational data for the divalent, trivalent, and tetravalent systems, including their 15N enriched isotopomers demonstrate these cumulenes to decrease in order of backbonding as TiII→TiIII→TiIV and increasing order of π-donation as TiII→TiIII→TiIV, thus displaying more covalency in TiIII species. Lastly, we show a synthetic cycle whereby complex 1 can deliver an N-atom to CO and CNAd.

7.
J Am Chem Soc ; 145(14): 7992-8000, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995316

RESUMO

Catalytic C-H borylation is an attractive method for the conversion of the most abundant hydrocarbon, methane (CH4), to a mild nucleophilic building block. However, existing CH4 borylation catalysts often suffer from low turnover numbers and conversions, which is hypothesized to result from inactive metal hydride agglomerates. Herein we report that the heterogenization of a bisphosphine molecular precatalyst, [(dmpe)Ir(cod)CH3], onto amorphous silica dramatically enhances its performance, yielding a catalyst that is 12-times more efficient than the current standard for CH4 borylation. The catalyst affords over 2000 turnovers at 150 °C in 16 h with a selectivity of 91.5% for mono- vs diborylation. Higher catalyst loadings improve yield and selectivity for the monoborylated product (H3CBpin) with 82.8% yield and >99% selectivity being achieved with 1255 turnovers. X-ray absorption and dynamic nuclear polarization-enhanced solid-state NMR spectroscopic studies identify the supported precatalyst as an IrI species, and indicate that upon completion of catalysis, multinuclear Ir polyhydrides are not formed. This is consistent with the hypothesis that immobilization of the organometallic Ir species on a surface prevents bimolecular decomposition pathways. Immobilization of the homogeneous IrI fragment onto amorphous silica represents a unique and simple strategy to improve the TON and longevity of a CH4 borylation catalyst.

8.
Angew Chem Int Ed Engl ; 62(51): e202311749, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37815099

RESUMO

Here we report the use of a base metal complex [(tBu pyrpyrr2 )Fe(OEt2 )] (1-OEt2 ) (tBu pyrpyrr2 2- =3,5-tBu2 -bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3 -H bonds of 9,10-dihydroanthracene (2 a) using 2,4,6-trimethyl phenyl azide (3 a) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1-OEt2 with control in selectivity for single C-H amination versus double C-H amination. Catalytic C-H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBu pyrpyrr2 )Fe{=N(2,6-Me2 -4-tBu-C6 H2 )] (1-imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1-imido reacts with 2 a to produce the ferrous aniline adduct [(tBu pyrpyrr2 )Fe{NH(2,6-Me2 -4-tBu-C6 H2 )(C14 H11 )}] (1-aniline) in 45 % yield. Lastly, it was found that complexes 1-imido and 1-aniline are both competent intermediates in catalytic intermolecular C-H amination.

9.
J Am Chem Soc ; 144(1): 527-537, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34963052

RESUMO

AdN3 (Ad = 1-adamantyl) reacts with the tetrahedral TiII complex [(TptBu,Me)TiCl] (TptBu,Me = hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate) to generate a mixture of an imide complex, [(TptBu,Me)TiCl(NAd)] (4), and an unusual and kinetically stable azide adduct of the group 4 metal, namely, [(TptBu,Me)TiCl(γ-N3Ad)] (3). In these conversions, the product distribution is determined by the relative concentration of reactants. In contrast, the azide adduct 3 forms selectively when a masked TiII complex (N2 or AdNC adduct) reacts with AdN3. Upon heating, 3 extrudes dinitrogen in a unimolecular process proceeding through a titanatriazete intermediate to form the imide complex 4, but the observed thermal stability of the azide adduct (t1/2 = 61 days at 25 °C) is at odds with the large fraction of imide complex formed directly in reactions between AdN3 and [(TptBu,Me)TiCl] at room temperature (∼50% imide with a 1:1 stoichiometry). A combination of theoretical and experimental studies identified an additional deazotation pathway, proceeding through a bimetallic complex bridged by a single azide ligand. The electronic origin of this deazotation mechanism lies in the ability of azide adduct 3 to serve as a π-backbonding metallaligand toward free [(TptBu,Me)TiCl]. These findings unveil a new class of azide-to-imide conversions for transition metals, highlighting that the mechanisms underlying this common synthetic methodology may be more complex than conventionally assumed, given the concentration dependence in the conversion of an azide into an imide complex. Lastly, we show how significantly different AdN3 reacts when treated with [(TptBu,Me)VCl].

10.
J Am Chem Soc ; 144(29): 13066-13070, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35833652

RESUMO

Highly modular and rational syntheses of titanium compounds containing ditelluride, terminal telluride, and bis(telluride) structural motifs are disclosed in this study. Titanate anions bearing two cis and terminal telluride functionalities bound to the same metal center represent a unique example of a group 4 transition metal bis(chalcogenide) ion and are accessed in a simple, single-step procedure from Ti(III) bis(alkyl) complexes in the presence of an outer-sphere reductant and at least 3 equiv of Te0 powder. These compounds have been characterized crystallographically and spectroscopically with some preliminary reactivity reported for the anionic Ti(═Te)2 motif. We also report solution 125Te NMR spectral data in addition to theoretical studies addressing the bonding and structure for these titanate bis(tellurido) systems.


Assuntos
Compostos Organometálicos , Titânio , Espectroscopia de Ressonância Magnética , Metais , Compostos Organometálicos/química , Titânio/química
11.
J Am Chem Soc ; 144(23): 10201-10219, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35652694

RESUMO

Transmetallation of [VCl3(THF)3] and [TlTptBu,Me] afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate), which was reduced with KC8 to form a C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a high-spin (S = 1) ground state and displays rhombic high-frequency and -field electron paramagnetic resonance (HFEPR) spectra, while complex 2 has an S = 3/2 4A2 ground state observable by conventional EPR spectroscopy. Complex 1 reacts with NaN3 to form the VV nitride-azide complex [(TptBu,Me)V≡N(N3)] (3). A likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4), was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally stable but reacts with NaN3 to form 3, implying a bis-azide intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3 with KC8 furnishes a trinuclear and mixed-valent nitride, [{(TptBu,Me)V}2(µ4-VN4)] (5), conforming to a Robin-Day class I description. Complex 5 features a central vanadium ion supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer, [{(TptBu,Me)V}2(1,3-µ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently produced along with [(κ2-TptBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIV≡N} intermediate, [(TptBu,Me)V≡N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V≡N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-TptBu,Me)2V]. A more stable adduct (B-OPPh3) was prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be isolated.


Assuntos
Azidas , Vanádio , Boratos/química , Ligantes , Solventes
12.
Inorg Chem ; 61(2): 1079-1090, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34978453

RESUMO

The mono-benzaldimine (HN═CHPh) complex [(tBupyrpyrr2)Fe(HN═CHPh)] (1-HN═CHPh) has been prepared by reaction of [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 2,6-bis(3,5-di-tert-butyl-pyrrolyl)pyridine) with one equivalent of benzyl azide. Compound 1-HN═CHPh retains the cis-divacant octahedral coordination geometry akin to 1, as established by single crystal X-ray diffraction study. A bis-HN═CHPh complex [(tBupyrpyrr2)Fe(HN═CHPh)2] (2) was also prepared by the addition of two equivalents of benzyl azide to 1, and its molecular structure exhibits the two HN═CHPh ligands coordinated trans to each other, thereby forming a square pyramidal coordination geometry at the FeII center. Reaction of 1 with excess benzyl azide yields [(tBupyrpyrr2)Fe(HN═CHPh)2·PhCHNCH(NH2)Ph] (2-PhCHNCH(NH2)Ph), which contains an unstable benzylideneamino phenyl methanamine fragment, effectively hydrogen bonded to 2. Thermolysis of 2 or 2-PhCHNCH(NH2)Ph releases the HN═CHPh self-coupling products hydrobenzamide (A), N-benzylidine benzylamine (B), and benzonitrile (C). Under catalytic conditions, free HN═CHPh (cis/trans-HN═CHPh mixture) is produced using 2.5 mol % of 1 in 90% spectroscopic yield. These studies provide a clearer understanding for the conversion of the HN═CHPh in 2 or 2-PhCHNCH(NH2)Ph to the C-C and C-N coupled products. Reduction of 1-HN═CHPh with KC8 yields the reductively coupled benzylamide complex [K(OEt2)]2[(tBupyrpyrr2)2Fe2(µ2-NHCHPhCHPhNH)] (3) as the result of a new C-C bond formed between two radical benzylamide fragments.

13.
Angew Chem Int Ed Engl ; 61(52): e202212488, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36195827

RESUMO

Decarbonylation along with P-atom transfer from the phosphaethynolate anion, PCO- , to the NbIV complex [(PNP)NbCl2 (Nt BuAr)] (1) (PNP=N[2-Pi Pr2 -4-methylphenyl]2 - ; Ar=3,5-Me2 C6 H3 ) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(Nt BuAr)] (2). Reduction of 2 with CoCp*2 cleaves the P-P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(Nt BuAr)] (3). Theoretical studies have been used to understand both the coupling of the P-atom and the reductive cleavage of the P-P bond. Reaction of 3 with a two-electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P-P coupled ligand, namely [(PNPP)Nb=S(Nt BuAr)] (4).

14.
Angew Chem Int Ed Engl ; 61(43): e202209122, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001771

RESUMO

A dinuclear hafnium complex containing the parent imido ligand [(PN)(PNC)Hf=NH{µ2 -K}]2 (2) (PN- =(N-(2-Pi Pr2 -4-methylphenyl)-2,4,6-Me3 C6 H2 ; PNC2- =(N-(2-Pi Pr2 -4-methylphenyl)-2,4,6-CH2 Me2 C6 H2 ), was prepared by reduction of the bisazide trans-[(PN)2 Hf(N3 )2 ] (1) with two equiv of KC8 . Encapsulation of K+ in 2 with crown-ether or cryptand affords the first discrete salt [K(encap)][(PN)(PNC)Hf≡NH] (encap=18-crown-6(THF)2 , 3; 2,2,2-Kryptofix, 4), featuring a terminal parent imide and possessing some of the shortest Hf-N bond lengths known to date. DFT calculations revealed formation of 2 to proceed via an extremely basic monomeric nitrido, [(PN)2 Hf≡N]- (A), having a computed pKBH+ of ∼57 followed by heterolytic splitting of an inert 1,2-CH bond of a benzylic methyl group across the Hf≡N triple bond in A. An electronic structure analysis reveals A to possess a covalent Hf≡N triple bond and of super-basic character. We also showcase reactivity of the Hf≡NH bond with various electrophiles.

15.
Inorg Chem ; 60(17): 13091-13100, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34375089

RESUMO

Oxidation of the low-spin FeIV imido complex [{(tBupyrr)2py}Fe═NAd] (1) ((tBupyrr)2py2- = 2,6-bis(3,5-di-tert-butyl-pyrrolyl)pyridine, Ad = 1-adamantyl) with AgOAc or AgNO3 promotes reductive N-N bond coupling of the former imido nitrogen with a pyrrole nitrogen to form the respective ferric hydrazido-like pincer complexes [{(tBupyrrNAd)(tBupyrr)py}Fe(κ2-X)] (X = OAc-, 2OAc; NO3-, 2NO3). Reduction of 2OAc with KC8 cleaves the N-N bond to reform the FeIV imido ligand in 1, whereas acid-mediated demetalation of 2OAc or 2NO3 yields the free hydrazine ligand [(tBupyrrNHAd)(tBupyrrH)py] (3), the latter of which can be used as a direct entry to the iron imido complex when treated with [Fe{N(SiMe3)2}2]. In addition to characterizing these Fe systems, we show how this nitrene transfer strategy can be expanded to Co for the one-step synthesis of Co{(tBu-NHAdpyrr)(tBupyrr)py}] (4) ((tBu-NHAdpyrr)(tBupyrr)py2- = 2-(3-tBu-5-(1-adamantylmethyl-2-methylpropane-2-yl)-pyrrol-2-yl)-6-(3,5-tBu2-pyrrol-2-yl)-pyridine).

16.
Inorg Chem ; 60(8): 5635-5646, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33825450

RESUMO

The nitride salt [(PN)2Ti≡N{µ2-K(OEt2)}]2 (1) (PN- = (N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2) can be oxidized with two equiv of I2 or four equiv of ClCPh3 to produce the phosphinimide-halide complexes (NPN')(PN)Ti(X) (X- = I (2), Cl (3); NPN' = N-(2-NPiPr2-4-methylphenyl)-2,4,6-Me3C6H22-), respectively. In the case of 2, H2 was found to be one of the other products; whereas, HCPh3 and Gomberg's dimer were observed upon the formation of 3. Independent studies suggest that the oxidation of 1 could imply the formation of the transient nitridyl species [(PN)2Ti(≡N•)] (A), which can either oxidize the proximal phosphine atom to produce the Ti(III) intermediate [(NPN')(PN)Ti] (B) or, alternatively, engage in H atom abstraction to form the parent imido (PN)2Ti≡NH (4). The latter was independently prepared and was found to photochemically convert to the titanium-hydride, (NPN')(PN)Ti(H) (5). Isotopic labeling studies using (PN)2Ti≡ND (4-d1) as well as reactivity studies of 5 with a hydride abstractor demonstrate the presence of the hydride ligand in 5. An alternative route to putative A was observed via a photochemically promoted incomplete reduction of the azide ligand in (PN)2Ti(N3) (6) to 4. This process was accompanied by some formation of 5. Frozen matrix X-band EPR studies of 6, performed under photolytic conditions, were consistent with species B being formed under these reaction conditions, originating from a low barrier N-insertion into the phosphine group in the putative nitridyl species A. Computational studies were also undertaken to discover the mechanism and plausibility of the divergent pathways (via intermediates A and B) in the formation of 2 and 3, and to characterize the bonding and electronic structure of the elusive nitrogen-centered radical in A.

17.
Angew Chem Int Ed Engl ; 60(32): 17595-17600, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34192399

RESUMO

Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiII complex [(TptBu,Me )TiCl], yielded the [(TptBu,Me )Ti(η3 -ECNAd)] species (Ad=1-adamantyl, TptBu,Me- =hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3 )3 ; moreover, its bent geometry hints to a reduced Ad-NCP3- resonance contributor. The analogous and rarer mono-substituted cyanoarsenide ligand, Ad-NCAs3- , shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII , VII fails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me )V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π-backbonding interactions with the former TiII ion, and their assembly to most likely involve a concerted E atom transfer between Ti-bound OCE- to AdNC ligands when studying the reaction coordinate for E=P.

18.
Angew Chem Int Ed Engl ; 60(46): 24411-24417, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34435422

RESUMO

A low-spin and mononuclear vanadium complex, (Me nacnac)V(CO)(η2 -P≡Ct Bu) (2) (Me nacnac- =[ArNC(CH3 )]2 CH, Ar=2,6-i Pr2 C6 H3 ), was prepared upon treatment of the vanadium neopentylidyne complex (Me nacnac)V≡Ct Bu(OTf) (1) with Na(OCP)(diox)2.5 (diox=1,4-dioxane), while the isoelectronic ate-complex [Na(15-crown-5)]{([ArNC(CH2 )]CH[C(CH3 )NAr])V(CO)(η2 -P≡Ct Bu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5 and ([ArNC(CH2 )]CH[C(CH3 )NAr])V≡Ct Bu(OEt2 ) (3) in the presence of crown-ether. Computational studies suggest that the P-atom transfer proceeds by [2+2]-cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V-C≡O linkage. The nature of the electronic ground state in diamagnetic complexes, 2 and 4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X-ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X-ray single-crystal structural characterization. In combination, these data are consistent with a low-valent vanadium ion in complexes 2 and 4. This study represents the first example of a metathesis reaction between the P-atom of [PCO]- and an alkylidyne ligand.

19.
J Am Chem Soc ; 142(22): 10143-10152, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32315531

RESUMO

The bonding between scandium and carbon in a series of alkylidene- and alkylidyne-like moieties is compared. The Tebbe analogue complex (PNP)Sc(µ2-CHSiMe3)(µ2-CH3)[Al(CH3)(CH2SiMe3)] (2) (PNP- = N[2-PiPr2-4-methylphenyl]2) could be formed by adding AlMe3 to (PNP)Sc(CH2SiMe3)2 (1). The fluxional behavior of 2 is studied by a combination of 2D 13C-1H HMQC, HMBC, and other heteronuclear NMR spectroscopic experiments. The phosphonioalkylidene complex (PNP)Sc(CHPPh3)(CH3) (3) could be prepared from 2 by treatment with 2 equiv of the ylide H2CPPh3 or by methane elimination from (PNP)Sc(CH3)2 and 1 equiv of H2CPPh3. The reactivity of the alkylidene in 2 was further explored with N3Ad, which gave insertion at the Sc-C bond, yielding (PNP)Sc(CH3)[η2-N3AdCHSiMe3Al(CH3)(CH2SiMe3)] (4), while DMAP provided C-H activation across the alkylidene with loss of the Al-C bond to form (PNP)Sc(η2-NC5H3NMe2)(CH2SiMe3) (5). Utilizing the same approach that yielded 2, methane elimination in 3 could further be promoted with Al(CH3)3 to furnish the first example of a scandium phosphonioalkylidyne complex, (PNP)Sc(µ2-CPh3)(µ2-CH3)Al(CH3)2 (6). Experimental and theoretical studies were combined to compare the bonding in 2, 3, and 6, in order to understand the legitimacy of Sc-C multiple bond character.

20.
J Am Chem Soc ; 142(18): 8147-8159, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239927

RESUMO

A rare example of a dinuclear iron core with a non-linearly bridged dinitrogen ligand is reported in this work. One-electron reduction of [(tBupyrr2py)Fe(OEt2)] (1) (tBupyrr2py2- = 2,6-bis((3,5-di-tert-butyl)pyrrol-2-yl)pyridine) with KC8 yields the complex [K]2[(tBupyrr2py)Fe]2(µ2-η1:η1-N2) (2), where the unusual cis-divacant octahedral coordination geometry about each iron and the η5-cation-π coordination of two potassium ions with four pyrrolyl units of the ligand cause distortion of the bridging end-on µ-N2 about the FeN2Fe core. Attempts to generate a Et2O-free version of 1 resulted instead in a dinuclear helical dimer, [(tBupyrr2py)Fe]2 (3), via bridging of the pyridine moieties of the ligand. Reduction of 3 by two electrons under N2 does not break up the dimer, nor does it result in formation of 2 but instead formation of the ate-complex [K(OEt2)]2[(tBupyrr2py)Fe]2 (4). Reduction of 1 by two electrons and in the presence of crown-ether forms the tetraanionic N2 complex [K2][K(18-crown-6)]2(tBupyrr2py)Fe]2(µ2-η1:η1-N2) (5), also having a distorted FeN2Fe moiety akin to 2. Complex 2 is thermally unstable and loses N2, disproportionating to Fe nanoparticles among other products. A combination of single-crystal X-ray diffraction studies, solution and solid-state magnetic studies, and 57Fe Mössbauer spectroscopy has been applied to characterize complexes 2-5, whereas DFT studies have been used to help explain the bonding and electronic structure in these unique diiron-N2 complexes 2 and 5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA