Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ann Rheum Dis ; 78(5): 672-675, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30862648

RESUMO

OBJECTIVES: Nerve growth factor (NGF) has emerged as a key driver of pain in osteoarthritis (OA) and antibodies to NGF are potent analgesics in human disease. Here, we validate a novel vaccine strategy to generate anti-NGF antibodies for reversal of pain behaviour in a surgical model of OA. METHODS: Virus-like particles were derived from the cucumber mosaic virus (CuMV) and coupled to expressed recombinant NGF to create the vaccine. 10-week-old male mice underwent partial meniscectomy to induce OA or sham-surgery. Spontaneous pain behaviour was measured by Linton incapacitance and OA severity was quantified using OARSI histological scoring. Mice (experimental and a sentinel cohort) were inoculated with CuMVttNGF (Vax) or CuMVttctrl (Mock) either before surgery or once pain was established. Efficacy of anti-NGF from the plasma of sentinel vaccinated mice was measured in vitro using a neurite outgrowth assay in PC12 cells. RESULTS: Anti-NGF titres were readily detectable in the vaccinated but not mock vaccinated mice. Regular boosting with fresh vaccine was required to maintain anti-NGF titres as measured in the sentinel cohort. Both prophylactic and therapeutic vaccination demonstrated a reversal of pain behaviour by incapacitance testing, and a meta-analysis of the two studies showing analgesia at peak anti-NGF titres was highly statistically significant. Serum anti-NGF was able to inhibit neurite outgrowth equivalent to around 150 ug/mL of recombinant monoclonal antibody. CONCLUSIONS: This study demonstrates therapeutic efficacy of a novel NGF vaccine strategy that reversibly alleviates spontaneous pain behaviour in surgically induced murine OA.


Assuntos
Analgésicos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Dor Crônica/tratamento farmacológico , Fator de Crescimento Neural/imunologia , Osteoartrite/complicações , Vacinação/métodos , Analgésicos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Dor Crônica/etiologia , Dor Crônica/imunologia , Modelos Animais de Doenças , Masculino , Camundongos , Osteoartrite/imunologia , Manejo da Dor
2.
Ann Rheum Dis ; 77(9): 1372-1380, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29925506

RESUMO

OBJECTIVES: One mechanism by which cartilage responds to mechanical load is by releasing heparin-bound growth factors from the pericellular matrix (PCM). By proteomic analysis of the PCM, we identified connective tissue growth factor (CTGF) and here investigate its function and mechanism of action. METHODS: Recombinant CTGF (rCTGF) was used to stimulate human chondrocytes for microarray analysis. Endogenous CTGF was investigated by in vitro binding assays and confocal microscopy. Its release from cut cartilage (injury CM) was analysed by Western blot under reducing and non-reducing conditions. A postnatal, conditional CtgfcKO mouse was generated for cartilage injury experiments and to explore the course of osteoarthritis (OA) by destabilisation of the medial meniscus. siRNA knockdown was performed on isolated human chondrocytes. RESULTS: The biological responses of rCTGF were TGFß dependent. CTGF displaced latent TGFß from cartilage and both were released on cartilage injury. CTGF and latent TGFß migrated as a single high molecular weight band under non-reducing conditions, suggesting that they were in a covalent (disulfide) complex. This was confirmed by immunoprecipitation. Using CtgfcKO mice, CTGF was required for sequestration of latent TGFß in the matrix and activation of the latent complex at the cell surface through TGFßR3. In vivo deletion of CTGF increased the thickness of the articular cartilage and protected mice from OA. CONCLUSIONS: CTGF is a latent TGFß binding protein that controls the matrix sequestration and activation of TGFß in cartilage. Deletion of CTGF in vivo caused a paradoxical increase in Smad2 phosphorylation resulting in thicker cartilage that was protected from OA.


Assuntos
Artrite Experimental/metabolismo , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Osteoartrite/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Artrite Experimental/patologia , Artrite Experimental/prevenção & controle , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/deficiência , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Camundongos Knockout , Osteoartrite/patologia , Osteoartrite/prevenção & controle , Proteoglicanas/metabolismo , Proteômica , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Recombinantes/farmacologia , Proteína Smad2/metabolismo , Técnicas de Cultura de Tecidos
3.
Methods Mol Biol ; 2598: 357-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355305

RESUMO

In this chapter, we describe an induced model of osteoarthritis in mice, frequently employed in the study of this disease. We outline in detail the surgical induction of disease and preparation of samples for histological assessment of disease.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Meniscos Tibiais/cirurgia , Meniscos Tibiais/patologia , Osteoartrite/patologia , Modelos Animais de Doenças , Cartilagem Articular/patologia , Camundongos Endogâmicos C57BL
4.
Nat Commun ; 13(1): 3059, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650194

RESUMO

Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.


Assuntos
Calcificação Fisiológica , Neovascularização Fisiológica , Estresse Mecânico , Adolescente , Desenvolvimento Ósseo , Matriz Óssea , Proteínas da Matriz Extracelular , Humanos , Canais Iônicos , Morfogênese , Fosfoproteínas , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
5.
J Bone Miner Res ; 37(6): 1081-1096, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038201

RESUMO

Compared with our understanding of endochondral ossification, much less is known about the coordinated arrest of growth defined by the narrowing and fusion of the cartilaginous growth plate. Throughout the musculoskeletal system, appropriate cell and tissue responses to mechanical force delineate morphogenesis and ensure lifelong health. It remains unclear how mechanical cues are integrated into many biological programs, including those coordinating the ossification of the adolescent growth plate at the cessation of growth. Primary cilia are microtubule-based organelles tuning a range of cell activities, including signaling cascades activated or modulated by extracellular biophysical cues. Cilia have been proposed to directly facilitate cell mechanotransduction. To explore the influence of primary cilia in the mouse adolescent limb, we conditionally targeted the ciliary gene Intraflagellar transport protein 88 (Ift88fl/fl ) in the juvenile and adolescent skeleton using a cartilage-specific, inducible Cre (AggrecanCreERT2 Ift88fl/fl ). Deletion of IFT88 in cartilage, which reduced ciliation in the growth plate, disrupted chondrocyte differentiation, cartilage resorption, and mineralization. These effects were largely restricted to peripheral tibial regions beneath the load-bearing compartments of the knee. These regions were typified by an enlarged population of hypertrophic chondrocytes. Although normal patterns of hedgehog signaling were maintained, targeting IFT88 inhibited hypertrophic chondrocyte VEGF expression and downstream vascular recruitment, osteoclastic activity, and the replacement of cartilage with bone. In control mice, increases to physiological loading also impair ossification in the peripheral growth plate, mimicking the effects of IFT88 deletion. Limb immobilization inhibited changes to VEGF expression and epiphyseal morphology in Ift88cKO mice, indicating the effects of depletion of IFT88 in the adolescent growth plate are mechano-dependent. We propose that during this pivotal phase in adolescent skeletal maturation, ciliary IFT88 protects uniform, coordinated ossification of the growth plate from an otherwise disruptive heterogeneity of physiological mechanical forces. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Lâmina de Crescimento , Osteogênese , Proteínas Supressoras de Tumor , Animais , Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Proteínas Hedgehog/metabolismo , Mecanotransdução Celular , Camundongos , Osteogênese/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Arthritis Rheumatol ; 74(1): 49-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34105311

RESUMO

OBJECTIVE: Mechanical and biologic cues drive cellular signaling in cartilage development, health, and disease. Primary cilia proteins, which are implicated in the transduction of biologic and physiochemical signals, control cartilage formation during skeletal development. This study was undertaken to assess the influence of the ciliary protein intraflagellar transport protein 88 (IFT88) on postnatal cartilage from mice with conditional knockout of the Ift88 gene (Ift88-KO). METHODS: Ift88fl/fl and aggrecanCreERT2 mice were crossed to create a strain of cartilage-specific Ift88-KO mice (aggrecanCreERT2 ;Ift88fl/fl ). In these Ift88-KO mice and Ift88fl/fl control mice, tibial articular cartilage thickness was assessed by histomorphometry, and the integrity of the cartilage was assessed using Osteoarthritis Research Society International (OARSI) damage scores, from adolescence through adulthood. In situ mechanisms of cartilage damage were investigated in the microdissected cartilage sections using immunohistochemistry, RNAScope analysis, and quantitative polymerase chain reaction. Osteoarthritis (OA) was induced in aggrecanCreERT2 ;Ift88fl/fl mice and Ift88fl/fl control mice using surgical destabilization of the medial meniscus (DMM). Following tamoxifen injection and DMM surgery, the mice were given free access to exercise on a wheel. RESULTS: Deletion of Ift88 resulted in progressive reduction in the thickness of the medial tibial cartilage in adolescent mice, as well as marked atrophy of the cartilage in mice during adulthood. In aggrecanCreERT2 ;Ift88fl/fl mice at age 34 weeks, the median thickness of the medial tibial cartilage was 89.42 µm (95% confidence interval [95% CI] 84.00-93.49), whereas in Ift88fl/fl controls at the same age, the median cartilage thickness was 104.00 µm (95% CI 100.30-110.50; P < 0.0001). At all time points, the median thickness of the calcified cartilage was reduced. In some mice, atrophy of the medial tibial cartilage was associated with complete, spontaneous degradation of the cartilage. Following DMM, aggrecanCreERT2 ;Ift88fl/fl mice were found to have increased OARSI scores of cartilage damage. In articular cartilage from maturing mice, atrophy was not associated with obvious increases in aggrecanase-mediated destruction or chondrocyte hypertrophy. Of the 44 candidate genes analyzed, only Tcf7l2 expression levels correlated with Ift88 expression levels in the microdissected cartilage. However, RNAScope analysis revealed that increased hedgehog (Hh) signaling (as indicated by increased expression of Gli1) was associated with the reductions in Ift88 expression in the tibial cartilage from Ift88-deficient mice. Wheel exercise restored both the articular cartilage thickness and levels of Hh signaling in these mice. CONCLUSION: Our results in a mouse model of OA demonstrate that IFT88 performs a chondroprotective role in articular cartilage by controlling the calcification of cartilage via maintenance of a threshold of Hh signaling during physiologic loading.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Osteoartrite/etiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Cartilagem Articular/anatomia & histologia , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão
7.
Osteoarthr Cartil Open ; 2(4): 100101, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33381766

RESUMO

OBJECTIVE: Evoked responses following mechanical or thermal stimulation are typically used to assess pain behaviour in murine osteoarthritis (OA). However, there is no consensus on how best to measure spontaneous pain behaviour. METHOD: OA by partial meniscectomy (PMX), or sham surgery was performed in 10-week old C57BL/6 male mice. Collagen-induced arthritis (CIA) was induced in 10 week old DBA1 male mice. Spontaneous pain behaviour, either at the time of active inflammatory disease (CIA), or over the 12 weeks after induction of OA, was assessed by static incapacitance testing (measuring percentage of weight placed through each hindlimb), and Laboratory Animal Behaviour Observation Registration and Analysis System (LABORAS) (translating cage vibrations of singly house animals into specific activities). Data were analysed by repeated measures two way ANOVA with post hoc testing comparing experimental groups with either sham operated or naïve controls. RESULTS: By incapacitance testing, two phases of painful behaviour were evident after PMX: a transient, post-operative phase, which resolved within one week, and a late OA pain phase starting 8 weeks post surgery and reaching statistical significance at week 12 (95% CI: sham 89.51-98.19, PMX 76.18-98.16). LABORAS, was able to detect pain behaviour in mice with CIA, but no statistically significant pain behaviour was observed in OA mice either post operatively (once analgesia had been controlled for) or at any later time points for any activity compared with the sham group. CONCLUSION: Static incapacitance testing is superior to LABORAS for measuring spontaneous pain behaviour in surgically induced murine OA.

8.
Arthritis Rheumatol ; 72(12): 2083-2093, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32602242

RESUMO

OBJECTIVE: Female C57BL/6 mice exhibit less severe chondropathy than male mice. This study was undertaken to test the robustness of this observation and explore underlying mechanisms. METHODS: Osteoarthritis was induced in male and female C57BL/6 or DBA/1 mice (n = 6-15 per group) by destabilization of the medial meniscus (DMM) or partial meniscectomy (PMX). Some mice were ovariectomized (OVX) (n = 30). In vivo repair after focal cartilage defect or joint immobilization (sciatic neurectomy) following DMM was assessed. Histologic analysis, evaluation of gene expression in whole knees, and behavioral analysis using Laboratory Animal Behavior Observation Registration and Analysis System (LABORAS) and Linton incapacitance testing (n = 7-10 mice per group) were performed. RESULTS: Female mice displayed less severe chondropathy (20-75% reduction) across both strains and after both surgeries. Activity levels after PMX were similar for male and female mice. Some repair-associated genes were increased in female mouse joints after surgery, but no repair differences were evident in vivo. Despite reduced chondropathy, female mice developed pain-like behavior at the same time as male mice. At the time of established pain-like behavior (10 weeks after PMX), pain-associated genes were significantly up-regulated in female mice, including Gdnf (mean ± SEM fold change 2.54 ± 0.30), Nrtn (6.71 ± 1.24), Ntf3 (1.92 ± 0.27), and Ntf5 (2.89 ± 0.48) (P < 0.01, P < 0.01, P < 0.05, and P < 0.001, respectively, versus male mice). Inflammatory genes were not regulated in painful joints in mice of either sex. CONCLUSION: We confirm strong structural joint protection in female mice that is not due to activity or intrinsic repair differences. Female mice develop pain at the same time as males, but induce a distinct set of neurotrophins. We speculate that heightened pain sensitivity in female mice protects the joint by preventing overuse.


Assuntos
Artrite Experimental/patologia , Cartilagem Articular/patologia , Osteoartrite do Joelho/patologia , Dor/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Camundongos , Medição da Dor , Fatores Sexuais
9.
ACR Open Rheumatol ; 2(10): 605-615, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33029956

RESUMO

OBJECTIVE: Tumor necrosis factor α-stimulated gene 6 (TSG-6) is an anti-inflammatory protein highly expressed in osteoarthritis (OA), but its influence on the course of OA is unknown. METHODS: Cartilage injury was assessed by murine hip avulsion or by recutting rested explants. Forty-two previously validated injury genes were quantified by real-time polymerase chain reaction in whole joints following destabilization of the medial meniscus (DMM) (6 hours and 7 days). Joint pathology was assessed at 8 and 12 weeks following DMM in 10-week-old male and female fibroblast growth factor 2 (FGF2)-/- , TSG-6-/- , TSG-6tg (overexpressing), FGF2-/- ;TSG-6tg (8 weeks only) mice, as well as strain-matched, wild-type controls. In vivo cartilage repair was assessed 8 weeks following focal cartilage injury in TSG-6tg and control mice. FGF2 release following cartilage injury was measured by enzyme-linked immunosorbent assay. RESULTS: TSG-6 messenger RNA upregulation was strongly FGF2-dependent upon injury in vitro and in vivo. Fifteeen inflammatory genes were significantly increased in TSG-6-/- joints, including IL1α, Ccl2, and Adamts5 compared with wild type. Six genes were significantly suppressed in TSG-6-/- joints including Timp1, Inhibin ßA, and podoplanin (known FGF2 target genes). FGF2 release upon cartilage injury was not influenced by levels of TSG-6. Cartilage degradation was significantly increased at 12 weeks post-DMM in male TSG-6-/- mice, with a nonsignificant 30% reduction in disease seen in TSG-6tg mice. No differences were observed in cartilage repair between genotypes. TSG-6 overexpression was unable to prevent accelerated OA in FGF2-/- mice. CONCLUSION: TSG-6 influences early gene regulation in the destabilized joint and exerts a modest late chondroprotective effect. Although strongly FGF2 dependent, TSG-6 does not explain the strong chondroprotective effect of FGF2.

10.
Arthritis Rheumatol ; 68(5): 1165-71, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26663140

RESUMO

OBJECTIVE: The pathogenesis of osteoarthritis (OA) is poorly understood. Loss of the proteoglycan aggrecan from cartilage is an early event. Recently, we identified a role for the JNK pathway, particularly JNK-2, in human articular chondrocytes in vitro in regulating aggrecan degradation. The present study was undertaken to investigate whether JNK-2 has a similar function in vivo and to examine its role in gene expression. METHODS: Aggrecan fragments were analyzed by Western blotting. OA was induced by destabilization of the medial meniscus (DMM) and assessed at 4, 8, and 12 weeks after surgery. Knee sections were stained with Safranin O. Medial compartments were scored by histologic grading for aggrecan loss and cartilage damage. RNA was extracted from JNK-2(-/-) and wild-type mouse knees 6 hours after DMM or after interleukin-1 stimulation of the proximal epiphysis, and expression of 33 DMM-regulated genes was analyzed with quantitative polymerase chain reaction-customized array cards. RESULTS: In vitro, basal and interleukin-1- or tumor necrosis factor-stimulated release of aggrecanase-generated aggrecan fragments was greatly reduced in cartilage from JNK-2(-/-) mice. In the OA model, JNK-2(-/-) mice exhibited significant reduction of aggrecanase-generated fragments and cartilage damage. Of 33 genes investigated, 13 were significantly down-regulated in JNK-2(-/-) mice compared with wild-type mice, following DMM. These included Has1, Adamts4, Tnf, Il6, Il18, Il18rap, Il1a, Inhba, Cd68, Ngf, Ccr2, Wnt16, and Tnfaip6, but not Adamts5. CONCLUSION: Our results demonstrate that JNK-2 regulates aggrecan degradation in cultured murine cartilage and surgically induced OA in vivo following mechanical destabilization of the knee joint. This implicates the JNK signaling pathway in OA and suggests potential novel approaches to therapy.


Assuntos
Agrecanas/metabolismo , Artrite Experimental/genética , Cartilagem Articular/metabolismo , Regulação da Expressão Gênica/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Osteoartrite do Joelho/genética , RNA Mensageiro/metabolismo , Agrecanas/efeitos dos fármacos , Animais , Western Blotting , Cartilagem Articular/efeitos dos fármacos , Modelos Animais de Doenças , Endopeptidases/efeitos dos fármacos , Endopeptidases/metabolismo , Epífises , Fêmur , Regulação da Expressão Gênica/efeitos dos fármacos , Articulação do Quadril , Interleucina-1/farmacologia , Articulação do Joelho , Masculino , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA