Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2400497121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917010

RESUMO

S100A1, a small homodimeric EF-hand Ca2+-binding protein (~21 kDa), plays an important regulatory role in Ca2+ signaling pathways involved in various biological functions including Ca2+ cycling and contractile performance in skeletal and cardiac myocytes. One key target of the S100A1 interactome is the ryanodine receptor (RyR), a huge homotetrameric Ca2+ release channel (~2.3 MDa) of the sarcoplasmic reticulum. Here, we report cryoelectron microscopy structures of S100A1 bound to RyR1, the skeletal muscle isoform, in absence and presence of Ca2+. Ca2+-free apo-S100A1 binds beneath the bridging solenoid (BSol) and forms contacts with the junctional solenoid and the shell-core linker of RyR1. Upon Ca2+-binding, S100A1 undergoes a conformational change resulting in the exposure of the hydrophobic pocket known to serve as a major interaction site of S100A1. Through interactions of the hydrophobic pocket with RyR1, Ca2+-bound S100A1 intrudes deeper into the RyR1 structure beneath BSol than the apo-form and induces sideways motions of the C-terminal BSol region toward the adjacent RyR1 protomer resulting in tighter interprotomer contacts. Interestingly, the second hydrophobic pocket of the S100A1-dimer is largely exposed at the hydrophilic surface making it prone to interactions with the local environment, suggesting that S100A1 could be involved in forming larger heterocomplexes of RyRs with other protein partners. Since S100A1 interactions stabilizing BSol are implicated in the regulation of RyR-mediated Ca2+ release, the characterization of the S100A1 binding site conserved between RyR isoforms may provide the structural basis for the development of therapeutic strategies regarding treatments of RyR-related disorders.


Assuntos
Cálcio , Microscopia Crioeletrônica , Canal de Liberação de Cálcio do Receptor de Rianodina , Proteínas S100 , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas S100/metabolismo , Proteínas S100/química , Cálcio/metabolismo , Animais , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Conformação Proteica , Humanos
2.
J Biol Inorg Chem ; 23(8): 1227-1241, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145655

RESUMO

With the increasing life expectancy of the world's population, neurodegenerative diseases, such as Alzheimer's disease (AD), will become a much more relevant public health issue. This fact, coupled with the lack of efficacy of the available treatments, has been driving research directed to the development of new drugs for this pathology. Metal-protein attenuating compounds (MPACs) constitute a promising class of agents with potential application on the treatment of neurodegenerative diseases, such as AD. Currently, most MPACs are based on 8-hydroxyquinoline. Recently, our research group has described the hybrid aroylhydrazone containing the 8-hydroxyquinoline group INHHQ as a promising MPAC. By studying the known structure-related ligand HPCIH, which does not contain the phenol moiety, as a simplified chemical model for INHHQ, we aimed to clarify the real impact of the aroylhydrazone group for the MPAC activity of a compound with potential anti-Alzheimer's activity. The present work describes a detailed solution and solid-state study of the coordination of HPCIH with Zn2+ ions, as well as its in vitro binding-ability towards this metal in the presence of the Aß(1-40) peptide. Similar to INHHQ, HPCIH is able to efficiently compete with Aß(1-40) for Zn2+ ions, performing as expected for an MPAC. The similarity between the behaviors of both ligands is remarkable. Taken together, the data presented herein point to aroylhydrazones, such as the compounds HPCIH and the previously published INHHQ, as encouraging MPACs for the treatment of AD.


Assuntos
Hidrazonas/química , Nootrópicos/química , Piridinas/química , Zinco/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Hidrazonas/síntese química , Hidrazonas/metabolismo , Ligantes , Estrutura Molecular , Nootrópicos/síntese química , Nootrópicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Estudo de Prova de Conceito , Ligação Proteica , Piridinas/síntese química , Piridinas/metabolismo , Zinco/metabolismo
3.
Acc Chem Res ; 49(5): 801-8, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27136297

RESUMO

The aggregation of proteins into toxic conformations plays a critical role in the development of different neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Creutzfled-Jakob's disease (CJD). These disorders share a common pathological mechanism that involves the formation of aggregated protein species including toxic oligomers and amyloid fibrils. The aggregation of alpha-synuclein (αS) in PD and the amyloid beta peptide (Aß) and tau protein in AD results in neuronal death and disease onset. In the case of CJD, the misfolding of the physiological prion protein (PrP) induces a chain reaction that results in accumulation of particles that elicit brain damage. Currently, there is no preventive therapy for these diseases and the available therapeutic approaches are based on the treatment of the symptoms rather than the underlying causes of the disease. Accordingly, the aggregation pathway of these proteins represents a useful target for therapeutic intervention. Therefore, understanding the mechanism of amyloid formation and its inhibition is of high clinical importance. The design of small molecules that efficiently inhibit the aggregation process and/or neutralize its associated toxicity constitutes a promising tool for the development of therapeutic strategies against these disorders. In this accounts, we discuss current knowledge on the anti-amyloid activity of phthalocyanines and their potential use as drug candidates in neurodegeneration. These tetrapyrrolic compounds modulate the amyloid assembly of αS, tau, Aß, and the PrP in vitro, and protect cells from the toxic effects of amyloid aggregates. In addition, in scrapie-infected mice, these compounds showed important prophylactic antiscrapie properties. The structural basis for the inhibitory effect of phthalocyanines on amyloid filament assembly relies on specific π-π interactions between the aromatic ring system of these molecules and aromatic residues in the amyloidogenic proteins. Analysis of the structure-activity relationship in phthalocyanines revealed that their anti-amyloid activity is highly dependent on the type of metal ion coordinated to the tetrapyrrolic system but is not sensitive to the number of peripheral charged substituents. The tendency of phthalocyanines to oligomerize (self-association) via aromatic-aromatic stacking interactions correlates precisely with their binding capabilities to target proteins and, more importantly, determines their efficiency as anti-amyloid agents. The ability to block different types of disease-associated protein aggregation raises the possibility that these cyclic tetrapyrrole compounds have a common mechanism of action to impair the formation of a variety of pathological aggregates. Because the structural and molecular basis for the anti-amyloid effects of these molecules is starting to emerge, combined efforts from the fields of structural, cellular, and animal biology will result critical for the rational design and discovery of new drugs for the treatment of amyloid related neurological disorders.


Assuntos
Indóis/química , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Humanos , Isoindóis , Ligação Proteica , Proteínas/química , Relação Estrutura-Atividade
4.
Inorg Chem ; 56(17): 10387-10395, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28820253

RESUMO

Alterations in the levels of copper in brain tissue and formation of α-synuclein (αS)-copper complexes might play a key role in the amyloid aggregation of αS and the onset of Parkinson's disease (PD). Recently, we demonstrated that formation of the high-affinity Cu(I) complex with the N-terminally acetylated form of the protein αS substantially increases and stabilizes local conformations with α-helical secondary structure and restricted motility. In this work, we performed a detailed NMR-based structural characterization of the Cu(I) complexes with the full-length acetylated form of its homologue ß-synuclein (ßS), which is colocalized with αS in vivo and can bind copper ions. Our results show that, similarly to αS, the N-terminal region of ßS constitutes the preferential binding interface for Cu(I) ions, encompassing two independent and noninteractive Cu(I) binding sites. According to these results, ßS binds the metal ion with higher affinity than αS, in a coordination environment that involves the participation of Met-1, Met-5, and Met-10 residues (site 1). Compared to αS, the shift of His from position 50 to 65 in the N-terminal region of ßS does not change the Cu(I) affinity features at that site (site 2). Interestingly, the formation of the high-affinity ßS-Cu(I) complex at site 1 in the N-terminus promotes a short α-helix conformation that is restricted to the 1-5 segment of the AcßS sequence, which differs with the substantial increase in α-helix conformations seen for N-terminally acetylated αS upon Cu(I) complexation. Our NMR data demonstrate conclusively that the differences observed in the conformational transitions triggered by Cu(I) binding to AcαS and AcßS find a correlation at the level of their backbone dynamic properties; added to the potential biological implications of these findings, this fact opens new avenues of investigations into the bioinorganic chemistry of PD.


Assuntos
Complexos de Coordenação/metabolismo , Cobre/metabolismo , Doença de Parkinson/metabolismo , beta-Sinucleína/metabolismo , Acetilação , Sítios de Ligação , Química Bioinorgânica , Complexos de Coordenação/química , Cobre/química , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , beta-Sinucleína/química
5.
Inorg Chem ; 55(20): 10727-10740, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27704849

RESUMO

Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits found in pancreatic ß-cells of patients with type 2 diabetes (T2D). Copper ions have an inhibitory effect on the amyloid aggregation of hIAPP, and they may play a role in the etiology of T2D. However, deeper knowledge of the structural details of the copper-hIAPP interaction is required to understand the molecular mechanisms involved. Here, we performed a spectroscopic study of Cu(II) binding to hIAPP and several variants, using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electronic absorption, and circular dichroism (CD) in the UV-vis region in combination with Born-Oppenheimer molecular dynamics (BOMD) and density functional theory geometry optimizations. We find that Cu(II) binds to the imidazole N1 of His18, the deprotonated amides of Ser19 and Ser20, and an oxygen-based ligand provided by Ser20, either via its hydroxyl group or its backbone carbonyl, while Asn22 might also play a role as an axial ligand. Ser20 plays a crucial role in stabilizing Cu(II) coordination toward the C-terminal, providing a potential link between the S20G mutation associated with early onset of T2D, its impact in Cu binding properties, and hIAPP amyloid aggregation. Our study defines the nature of the coordination environment in the Cu(II)-hIAPP complex, revealing that the amino acid residues involved in metal ion binding are also key residues for the formation of ß-sheet structures and amyloid fibrils. Cu(II) binding to hIAPP may lead to the coexistence of more than one coordination mode, which in turn could favor different sets of Cu-induced conformational ensembles. Cu-induced hIAPP conformers would display a higher energetic barrier to form amyloid fibrils, hence explaining the inhibitory effect of Cu ions in hIAPP aggregation. Overall, this study provides further structural insights into the bioinorganic chemistry of T2D.

6.
Inorg Chem ; 55(6): 2909-22, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26930130

RESUMO

The ability of the cellular prion protein (PrP(C)) to bind copper in vivo points to a physiological role for PrP(C) in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrP(C). Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting Cu(I) and Cu(II) binding properties. We have evaluated Cu(I) coordination to the PrP(106-115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. Cu(I) coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand; in the range of pH 5-8, both methionine (Met) residues bind to Cu(I), forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the chemical environment, such as those occurring during endocytosis of PrP(C) (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrP(C) to maintain the bound Cu(I) ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant Cu(I)-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper(II) superoxide complex. In this process, the Met residues are partially oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrP(C). This study provides further insight into the Cu(I) coordination properties of His111 in human PrP(C) and the molecular mechanism of oxygen activation by this site.


Assuntos
Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Proteínas Priônicas/química , Ligação Proteica , Espectroscopia por Absorção de Raios X
7.
J Am Chem Soc ; 137(20): 6444-7, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25939020

RESUMO

Growing evidence supports a link between brain copper homeostasis, the formation of alpha-synuclein (AS)-copper complexes, and the development of Parkinson disease (PD). Recently it was demonstrated that the physiological form of AS is N-terminally acetylated (AcAS). Here we used NMR spectroscopy to structurally characterize the interaction between Cu(I) and AcAS. We found that the formation of an AcAS-Cu(I) complex at the N-terminal region stabilizes local conformations with α-helical secondary structure and restricted motility. Our work provides new evidence into the metallo-biology of PD and opens new lines of research as the formation of AcAS-Cu(I) complex might impact on AcAS membrane binding and aggregation.


Assuntos
Cobre/química , Compostos Organometálicos/química , alfa-Sinucleína/química , Acetilação , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Dobramento de Proteína
8.
Inorg Chem ; 53(9): 4350-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24725094

RESUMO

Amyloid aggregation of α-synuclein (AS) has been linked to the pathological effects associated with Parkinson's disease (PD). Cu(II) binds specifically at the N-terminus of AS and triggers its aggregation. Site-specific Cu(I)-catalyzed oxidation of AS has been proposed as a plausible mechanism for metal-enhanced AS amyloid formation. In this study, Cu(I) binding to AS was probed by NMR spectroscopy, in combination with synthetic peptide models, site-directed mutagenesis, and C-terminal-truncated protein variants. Our results demonstrate that both Met residues in the motif (1)MDVFM(5) constitute key structural determinants for the high-affinity binding of Cu(I) to the N-terminal region of AS. The replacement of one Met residue by Ile causes a dramatic decrease in the binding affinity for Cu(I), whereas the removal of both Met residues results in a complete lack of binding. Moreover, these Met residues can be oxidized rapidly after air exposure of the AS-Cu(I) complex, whereas Met-116 and Met-127 in the C-terminal region remain unaffected. Met-1 displays higher susceptibility to oxidative damage compared to Met-5 because it is directly involved in both Cu(II) and Cu(I) coordination, resulting in closer exposure to the reactive oxygen species that may be generated by the redox cycling of copper. Our findings support a mechanism where the interaction of AS with copper ions leads to site-specific metal-catalyzed oxidation in the protein under physiologically relevant conditions. In light of recent biological findings, these results support a role for AS-copper interactions in neurodegeneration in PD.


Assuntos
Cobre/química , Doença de Parkinson/metabolismo , alfa-Sinucleína/química , Catálise , Cobre/metabolismo , Oxirredução , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , alfa-Sinucleína/metabolismo
9.
Biomolecules ; 13(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759809

RESUMO

Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation-contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies.


Assuntos
Cálcio , Insuficiência Cardíaca , Humanos , Cálcio/metabolismo , Acoplamento Excitação-Contração , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Mitocôndrias Cardíacas/metabolismo
10.
Nat Neurosci ; 26(8): 1365-1378, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429912

RESUMO

Cognitive dysfunction (CD) in heart failure (HF) adversely affects treatment compliance and quality of life. Although ryanodine receptor type 2 (RyR2) has been linked to cardiac muscle dysfunction, its role in CD in HF remains unclear. Here, we show in hippocampal neurons from individuals and mice with HF that the RyR2/intracellular Ca2+ release channels were subjected to post-translational modification (PTM) and were leaky. RyR2 PTM included protein kinase A phosphorylation, oxidation, nitrosylation and depletion of the stabilizing subunit calstabin2. RyR2 PTM was caused by hyper-adrenergic signaling and activation of the transforming growth factor-beta pathway. HF mice treated with a RyR2 stabilizer drug (S107), beta blocker (propranolol) or transforming growth factor-beta inhibitor (SD-208), or genetically engineered mice resistant to RyR2 Ca2+ leak (RyR2-p.Ser2808Ala), were protected against HF-induced CD. Taken together, we propose that HF is a systemic illness driven by intracellular Ca2+ leak that includes cardiogenic dementia.


Assuntos
Disfunção Cognitiva , Insuficiência Cardíaca , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Cálcio/metabolismo , Disfunção Cognitiva/etiologia , Insuficiência Cardíaca/metabolismo , Fosforilação , Qualidade de Vida , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fatores de Crescimento Transformadores/metabolismo
11.
Sci Transl Med ; 15(715): eadf8977, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37756377

RESUMO

Chemotherapy-induced cognitive dysfunction (chemobrain) is an important adverse sequela of chemotherapy. Chemobrain has been identified by the National Cancer Institute as a poorly understood problem for which current management or treatment strategies are limited or ineffective. Here, we show that chemotherapy treatment with doxorubicin (DOX) in a breast cancer mouse model induced protein kinase A (PKA) phosphorylation of the neuronal ryanodine receptor/calcium (Ca2+) channel type 2 (RyR2), RyR2 oxidation, RyR2 nitrosylation, RyR2 calstabin2 depletion, and subsequent RyR2 Ca2+ leakiness. Chemotherapy was furthermore associated with abnormalities in brain glucose metabolism and neurocognitive dysfunction in breast cancer mice. RyR2 leakiness and cognitive dysfunction could be ameliorated by treatment with a small molecule Rycal drug (S107). Chemobrain was also found in noncancer mice treated with DOX or methotrexate and 5-fluorouracil and could be prevented by treatment with S107. Genetic ablation of the RyR2 PKA phosphorylation site (RyR2-S2808A) also prevented the development of chemobrain. Chemotherapy increased brain concentrations of the tumor necrosis factor-α and transforming growth factor-ß signaling, suggesting that increased inflammatory signaling might contribute to oxidation-driven biochemical remodeling of RyR2. Proteomics and Gene Ontology analysis indicated that the signaling downstream of chemotherapy-induced leaky RyR2 was linked to the dysregulation of synaptic structure-associated proteins that are involved in neurotransmission. Together, our study points to neuronal Ca2+ dyshomeostasis via leaky RyR2 channels as a potential mechanism contributing to chemobrain, warranting further translational studies.


Assuntos
Antineoplásicos , Comprometimento Cognitivo Relacionado à Quimioterapia , Disfunção Cognitiva , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Encéfalo , Doxorrubicina/efeitos adversos
12.
Sci Adv ; 8(29): eabo1272, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857850

RESUMO

Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca2+ leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.6 to 3.6 Å, and reaching local resolutions of 2.25 Å, unprecedented for RyR2 channels. Under nonactivating conditions, the RyR2-R2474S channel is in a "primed" state between the closed and open states of WT RyR2, rendering it more sensitive to activation that results in stress-induced Ca2+ leak. The Rycal drug ARM210 binds to RyR2-R2474S, reverting the primed state toward the closed state. Together, these studies provide a mechanism for CPVT and for the therapeutic actions of ARM210.

13.
Stem Cell Reports ; 17(9): 2023-2036, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931078

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac channelopathy causing ventricular tachycardia following adrenergic stimulation. Pathogenic variants in RYR2-encoded ryanodine receptor 2 (RYR2) cause CPVT1 and cluster into domains I-IV, with the most N-terminal domain involving residues 77-466. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated for RYR2-F13L, -L14P, -R15P, and -R176Q variants. Isogenic control iPSCs were generated using CRISPR-Cas9/PiggyBac. Fluo-4 Ca2+ imaging assessed Ca2+ handling with/without isoproterenol (ISO), nadolol (Nad), and flecainide (Flec) treatment. CPVT1 iPSC-CMs displayed increased Ca2+ sparking and Ca2+ transient amplitude following ISO compared with control. Combined Nad treatment/ISO stimulation reduced Ca2+ amplitude and sparking in variant iPSC-CMs. Molecular dynamic simulations visualized the structural role of these variants. We provide the first functional evidence that these most proximal N-terminal localizing variants alter calcium handling similar to CPVT1. These variants are located at the N-terminal domain and the central domain interface and could destabilize the RYR2 channel promoting Ca2+ leak-triggered arrhythmias.


Assuntos
Células-Tronco Pluripotentes Induzidas , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Isoproterenol , Mutação , Miócitos Cardíacos/metabolismo , NAD , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia
15.
J Inorg Biochem ; 170: 160-168, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28249224

RESUMO

Alzheimer's and Parkinson's diseases share similar amyloidogenic mechanisms, in which metal ions might play an important role. In this last neuropathy, misfolding and aggregation of α-synuclein (α-Syn) are crucial pathological events. A moderate metal-binding compound, namely, 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone (INHHQ), which was previously reported as a potential 'Metal-Protein Attenuating Compound' for Alzheimer's treatment, is well-tolerated by healthy Wistar rats and does not alter their major organ weights, as well as the tissues' reduced glutathione and biometal levels, at a concentration of 200mgkg-1. INHHQ definitively crosses the blood-brain barrier and can be detected in the brain of rats so late as 24h after intraperitoneal administration. After 48h, brain clearance is complete. INHHQ is able to disrupt, in vitro, anomalous copper-α-Syn interactions, through a mechanism probably involving metal ions sequestering. This compound is non-toxic to H4 (human neuroglioma) cells and partially inhibits intracellular α-Syn oligomerization. INHHQ, thus, shows definite potential as a therapeutic agent against Parkinson's as well.


Assuntos
Barreira Hematoencefálica/metabolismo , Quelantes , Hidrazonas , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Quelantes/síntese química , Quelantes/química , Quelantes/farmacocinética , Quelantes/farmacologia , Avaliação Pré-Clínica de Medicamentos , Hidrazonas/síntese química , Hidrazonas/química , Hidrazonas/farmacocinética , Hidrazonas/farmacologia , Masculino , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar
16.
J Inorg Biochem ; 141: 208-211, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218565

RESUMO

The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. This process is selectively enhanced by copper in vitro and the interaction is proposed to play a potential role in vivo. Presently, the identity of the Cu(I) binding sites in AS and their relative affinities are under debate. In this work we have addressed unresolved details related to the structural binding specificity and affinity of Cu(I) to full-length AS. We demonstrated conclusively that: (i) the binding preferences of Cu(I) for the Met-binding sites at the N- (Kd=20 µM) and C-terminus (Kd=270 µM) of AS are widely different: (ii) the imidazole ring of His-50 acts as an effective anchoring residue (Kd=50 µM) for Cu(I) binding to AS; and (iii) no major structural rearrangements occur in the protein upon Cu(I) binding. Overall, our work shows that Cu(I) binding to the N- and C-terminal regions of AS are two independent events, with substantial differences in their affinities, and suggest that protein oxidative damage derived from a misbalance in cellular copper homeostasis would target preferentially the N-terminal region of AS. This knowledge is key to understanding the structural-aggregation basis of the copper catalyzed oxidation of AS.


Assuntos
Cobre/química , Histidina/química , alfa-Sinucleína/química , Sequência de Aminoácidos , Sítios de Ligação , Cátions Monovalentes , Humanos , Cinética , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Soluções , Termodinâmica , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA