Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3841, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386004

RESUMO

The Laramide orogeny is a pivotal time in the geological development of western North America, but its driving mechanism is controversial. Most prominent models suggest this event was caused by the collision of an oceanic plateau with the Southern California Batholith (SCB) which caused the angle of subduction beneath the continent to shallow and led to shut-down of the arc. Here, we use over 280 zircon and titanite Pb/U ages from the SCB to establish the timing and duration of magmatism, metamorphism and deformation. We show that magmatism was surging in the SCB from 90 to 70 Ma, the lower crust was hot, and cooling occurred after 75 Ma. These data contradict plateau underthrusting and flat-slab subduction as the driving mechanism for early Laramide deformation. We propose that the Laramide orogeny is a two-stage event consisting of: 1) an arc 'flare-up' phase in the SCB from 90-75 Ma; and 2) a widespread mountain building phase in the Laramide foreland belt from 75-50 Ma that is linked to subduction of an oceanic plateau.


Assuntos
Temperatura Baixa , Geologia , América do Norte , Transição de Fase
2.
Science ; 310(5748): 654-7, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16254183

RESUMO

Nineteen uranium-lead zircon ages of lower crustal gabbros from Atlantis Bank, Southwest Indian Ridge, constrain the growth and construction of oceanic crust at this slow-spreading midocean ridge. Approximately 75% of the gabbros accreted within error of the predicted seafloor magnetic age, whereas approximately 25% are significantly older. These anomalously old samples suggest either spatially varying stochastic intrusion at the ridge axis or, more likely, crystallization of older gabbros at depths of approximately 5 to 18 kilometers below the base of crust in the cold, axial lithosphere, which were uplifted and intruded by shallow-level magmas during the creation of Atlantis Bank.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA