Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(4): e0167922, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36943064

RESUMO

Acne vulgaris is a complex skin disease involving infection by Cutibacterium acnes, inflammation, and hyperkeratinization. We evaluated the activity of the retinoid 6-[3-(adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and 16 other retinoid analogs as potential anti-C. acnes compounds and found that CD437 displayed the highest antimicrobial activity with an MIC against C. acnes (ATCC 6919 and HM-513) of 1 µg/mL. CD437 demonstrated an MBC of 2 µg/mL compared to up to 64 µg/mL for the retinoid adapalene and up to 16 µg/mL for tetracycline, which are commonly used clinically to treat acne. Membrane permeability assays demonstrated that exposure of C. acnes ATCC 6919 to CD437 damaged the integrity of C. acnes ATCC 6919 bacterial membranes, and this finding was confirmed with scanning electron microscopy. Additionally, CD437 downregulated the expression of C. acnes ATCC 6919 virulence factors, including the genes encoding Christie-Atkins-Munch-Petersen factor 1 (CAMP1), CAMP2, glycerol-ester hydrolase B (GehB), sialidase B, and neuraminidase. In a mouse skin infection model of C. acnes ATCC 6919, topical treatment with CD437 ameliorated skin lesions and reduced the bacterial burden in situ (P < 0.001). In human NHEK primary cells, CD437 reduced the transcriptional levels of the coding genes for inflammatory cytokines (interleukin-1α, ~10-fold; interleukin-6, ~20-fold; interleukin-8, ~30-fold; and tumor necrosis factor-alpha, ~6-fold) and downregulated the transcriptional levels of KRT10 (~10-fold), FLG (~4-fold), and TGM1 (~2-fold), indicating that CD437 can diminish inflammation and hyperkeratinization. In summary, CD437 deserves further attention for its dual function as a potential acne therapeutic that potentially acts on both the pathogen and the host.


Assuntos
Acne Vulgar , Retinoides , Camundongos , Animais , Humanos , Retinoides/metabolismo , Retinoides/uso terapêutico , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Citocinas/metabolismo , Antibacterianos/uso terapêutico , Inflamação , Propionibacterium acnes
2.
Mol Pharm ; 20(1): 738-749, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36485036

RESUMO

Peptide stability to proteases has been a major requirement for developing peptide therapeutics. This study investigates the effects of peptide stability on antimicrobial and antibiofilm activity under various conditions. For this purpose, two human cathelicidin-derived peptides differing in stability to proteases were utilized. While GF-17, a peptide derived from the major antimicrobial region of human LL-37, can be rapidly cleaved by proteases, the engineered peptide 17BIPHE2 is resistant to multiple proteases. In the standard antimicrobial susceptibility, killing kinetics, and membrane permeabilization assays conducted in vitro using planktonic bacteria, these two peptides displayed similar potency. The two peptides were also similarly active against methicillin-resistant Staphylococcus aureus (MRSA) USA300 prior to biofilm formation. However, 17BIPHE2 was superior to GF-17 in disrupting preformed biofilms probably due to both enhanced stability and slightly higher DNA binding capacity. In a wax moth model, 17BIPHE2 better protected insects from MRSA infection-caused death than GF-17, consistent with the slower degradation of 17BIPHE2 than GF-17. Here, peptide antimicrobial activity was found to be critical for in vivo efficacy. When incorporated in the nanofiber/microneedle delivery device, GF-17 and 17BIPHE2 displayed a similar effect in eliminating MRSA in murine chronic wounds, underscoring the advantage of nanofibers in protecting the peptide from degradation. Since nanoformulation can ease the requirement of peptide stability, it opens the door to a direct use of natural peptides or their cocktails for antimicrobial treatment, accelerating the search of effective antibiofilm peptides to treat chronic wounds.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Humanos , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeo Hidrolases , Biofilmes , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Proc Natl Acad Sci U S A ; 117(32): 19446-19454, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723829

RESUMO

Antimicrobial peptides are important candidates for developing new classes of antibiotics because of their potency against antibiotic-resistant pathogens. Current research focuses on topical applications and it is unclear how to design peptides with systemic efficacy. To address this problem, we designed two potent peptides by combining database-guided discovery with structure-based design. When bound to membranes, these two short peptides with an identical amino acid composition can adopt two distinct amphipathic structures: A classic horizontal helix (horine) and a novel vertical spiral structure (verine). Their horizontal and vertical orientations on membranes were determined by solid-state 15N NMR data. While horine was potent primarily against gram-positive pathogens, verine showed broad-spectrum antimicrobial activity. Both peptides protected greater than 80% mice from infection-caused deaths. Moreover, horine and verine also displayed significant systemic efficacy in different murine models comparable to conventional antibiotics. In addition, they could eliminate resistant pathogens and preformed biofilms. Significantly, the peptides showed no nephrotoxicity to mice after intraperitoneal or intravenous administration for 1 wk. Our study underscores the significance of horine and verine in fighting drug-resistant pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Bases de Dados de Proteínas , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Resultado do Tratamento
4.
Proc Natl Acad Sci U S A ; 116(27): 13517-13522, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209048

RESUMO

As bacterial resistance to traditional antibiotics continues to emerge, new alternatives are urgently needed. Antimicrobial peptides (AMPs) are important candidates. However, how AMPs are designed with in vivo efficacy is poorly understood. Our study was designed to understand structural moieties of cationic peptides that would lead to their successful use as antibacterial agents. In contrast to the common perception, serum binding and peptide stability were not the major reasons for in vivo failure in our studies. Rather, our systematic study of a series of peptides with varying lysines revealed the significance of low cationicity for systemic in vivo efficacy against Gram-positive pathogens. We propose that peptides with biased amino acid compositions are not favored to associate with multiple host factors and are more likely to show in vivo efficacy. Thus, our results uncover a useful design strategy for developing potent peptides against multidrug-resistant pathogens.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Aminoácidos/química , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Simulação por Computador , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Camundongos , Testes de Sensibilidade Microbiana
5.
Indian J Plast Surg ; 54(3): 370-372, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34667527

RESUMO

Apert syndrome is a rare acrocephalosyndactyly (craniosynostosis) syndrome characterized by craniofacial dysmorphism and syndactyly of the hands and feet. It is caused by FGFR2 mutations and inherited in an autosomal dominant manner. This article describes a novel clinical variant of Apert syndrome having bilateral symmetrical tripod-shaped syndactyly in hands with milder craniofacial features in a sporadic case, along with a mutation in the fibroblast growth factor receptor 2 ( FGFR2 ) gene. The patient had shown craniosynostosis, dysmorphic face, ocular hypertelorism, marked depression of the nasal bridge, long philtrum, and low set ears. Direct resequencing of the FGFR2 gene through Sanger's method identified a heterozygous missense mutation; FGFR2c.758C>G (FGFR2p.P253R) in the exon-7 of the gene.

6.
Indian J Crit Care Med ; 25(9): 1020-1025, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34963720

RESUMO

BACKGROUND: Yellow phosphorus (YP) is a protoplasmic poison that causes acute liver failure (ALF) for which liver transplantation is the definitive modality. Hereby, we present our clinical data on the role of plasma exchange (PE) in ALF due to YP poisoning when liver transplantation is not readily available. METHODS: Our study is a prospective observational type, conducted between January 2017 and January 2020, which included patients with ALF due to YP poisoning requiring PE. Clinical features, quantity of poison consumed, and laboratory data before and after PE were noted, and the outcome was documented. RESULTS: This study had 10 patients. The mean age was 30 years. The ratio of male to female being 1.5:1. The amount of YP consumed (median) was 10 gm. Six patients consumed ≤10 gm and four consumed >10 gm. The mean of total PE sessions was 3.3. Seven patients (70%) had recovery from ALF, out of which five had consumed <10 gm of YP. Among patients who recovered after consuming YP, the mean day to get admitted to the hospital was 3.6 ± 1.81 (p = 0.017) and the time to start PE was 4.86 ± 1.67 days (p = 0.033). Three patients did not recover from ALF, of whom two expired. Peak total bilirubin (mg/dL) decreased to 2.76 from 9.29 (p = 0.005), serum glutamic oxaloacetic transaminase to 53.5 from 530 (IU/L) (p = 0.005), serum glutamic pyruvic transaminase to 54.5 from 378 (IU/L) (p = 0.005), international normalized ratio to 1.08 from 2.26 (p = 0.008), prothrombin time(s) decreased to 13.3 from 25.5 (p = 0.013), and activated partial thromboplastin time(s) to 24.6 from 40.8 (p = 0.007) post-PE sessions. CONCLUSIONS: Our study revealed that the patient outcome depends on the quantity of poison consumed, duration of hospitalization, and time to start PE from the day of YP consumption. PE may be considered as a bridge to liver transplant in ALF patients. HOW TO CITE THIS ARTICLE: Angraje S, Sekar M, Mishra B, Matcha J. Outcome of Plasma Exchange in Acute Liver Failure due to Yellow Phosphorus Poisoning: A Single-center Experience. Indian J Crit Care Med 2021;25(9):1020-1025.

7.
Mol Pharm ; 16(5): 2011-2020, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916573

RESUMO

Biofilms of multidrug-resistant bacteria in chronic wounds pose a great challenge in wound care. Herein, we report the topical delivery of molecularly engineered antimicrobial peptides using electrospun nanofiber dressings as a carrier for the treatment of biofilms of multidrug-resistant bacteria in diabetic wounds. Molecularly engineered human cathelicidin peptide 17BIPHE2 was successfully encapsulated in the core of pluronic F127/17BIPHE2-PCL core-shell nanofibers. The in vitro release profiles of 17BIPHE2 showed an in initial burst followed by a sustained release over 4 weeks. The peptide nanofiber formulations effectively killed methicillin-resistant Staphylococcus aureus (MRSA) USA300. Similarly, the 17BIPHE2 peptide containing nanofibers could also effectively kill other bacteria including Klebsiella pneumoniae (104 to 106 CFU) and Acinetobacter baumannii (104 to 107 CFU) clinical strains in vitro without showing evident cytotoxicity to skin cells and monocytes. Importantly, 17BIPHE2-containing nanofiber dressings without debridement caused five-magnitude decreases of the MRSA USA300 CFU in a biofilm-containing chronic wound model based on type II diabetic mice. In combination with debridement, 17BIPHE2-containing nanofiber dressings could completely eliminate the biofilms, providing one possible solution to chronic wound treatment. Taken together, the biodegradable nanofiber-based wound dressings developed in this study can be utilized to effectively deliver molecularly engineered peptides to treat biofilm-containing chronic wounds.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bandagens , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanofibras/administração & dosagem , Engenharia de Proteínas , Infecção dos Ferimentos/tratamento farmacológico , Administração Cutânea , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Nanofibras/química , Poloxâmero/química , Poliésteres/química , Pele/efeitos dos fármacos , Pele/microbiologia , Infecção dos Ferimentos/patologia , Catelicidinas
8.
Adv Exp Med Biol ; 1117: 215-240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980360

RESUMO

The incorporation of the innate immune system into humans is essential for survival and health due to the rapid replication of invading microbes and the delayed action of the adaptive immune system. Antimicrobial peptides are important components of human innate immunity. Over 100 such peptides have been identified in various human tissues. Human cathelicidin LL-37 is best studied, and there has been a growing interest in designing new peptides based on LL-37. This chapter describes the alternative processing of the human cathelicidin precursor, protease digestion, and lab cutting of LL-37. Both a synthetic peptide library and structure-based design are utilized to identify the active regions. Although challenging, the determination of the 3D structure of LL-37 enabled the identification of the core antimicrobial region. The minimal region of LL-37 can be function-dependent. We discuss the design and potential applications of LL-37 into antibacterial, antibiofilm, antiviral, antifungal, immune modulating, and anticancer peptides. LL-37 has been engineered into 17BIPHE2, a stable, selective, and potent antimicrobial, antibiofilm, and anticancer peptide. Both 17BIPHE2 and SAAP-148 can eliminate the ESKAPE pathogens and show topical in vivo antibiofilm efficacy. Also discussed are other application strategies, including peptide formulation, antimicrobial implants, and peptide-inducing factors such as vitamin D and sunlight. Finally, we summarize what we learned from peptide design based on human LL-37.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Catelicidinas , Humanos , Engenharia de Proteínas
10.
Biochemistry ; 56(31): 4039-4043, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28731688

RESUMO

Tryptophan-rich peptides, being short and suitable for large-scale chemical synthesis, are attractive candidates for developing a new generation of antimicrobials to combat antibiotic-resistant bacteria (superbugs). Although there are numerous pictures of the membrane-bound structure of a single tryptophan (W), how multiple Trp amino acids assemble themselves and interact with bacterial membranes is poorly understood. This communication presents the three-dimensional structure of an eight-residue Trp-rich peptide (WWWLRKIW-NH2 with 50% W) determined by the improved two-dimensional nuclear magnetic resonance method, which includes the measurements of 13C and 15N chemical shifts at natural abundance. This peptide forms the shortest two-turn helix with a distinct amphipathic feature. A unique structural arrangement is identified for the Trp triplet, WWW, that forms a π configuration with W2 as the horizontal bar and W1/W3 forming the two legs. An arginine scan reveals that the WWW motif is essential for killing methicillin-resistant Staphylococcus aureus USA300 and disrupting preformed bacterial biofilms. This unique π configuration for the WWW motif is stabilized by aromatic-aromatic interactions as evidenced by ring current shifts as well as nuclear Overhauser effects. Because the WWW motif is maintained, a change of I7 to R led to a potent antimicrobial and antibiofilm peptide with 4-fold improvement in cell selectivity. Collectively, this study elucidated the structural basis of antibiofilm activity of the peptide, identified a better peptide candidate via structure-activity relationship studies, and laid the foundation for engineering future antibiotics based on the WWW motif.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Desenho de Fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Modelos Moleculares , Oligopeptídeos/farmacologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Antibacterianos/efeitos adversos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/citologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/fisiologia , Micelas , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Confocal , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/efeitos adversos , Oligopeptídeos/química , Conformação Proteica em alfa-Hélice , Estereoisomerismo , Relação Estrutura-Atividade
11.
Biochim Biophys Acta Biomembr ; 1859(8): 1350-1361, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28450045

RESUMO

Antimicrobial peptides are essential components of the innate immune system of multicellular organisms. Although cationic and hydrophobic amino acids are known determinants of these amphipathic molecules for bacterial killing, it is not clear how lysine-arginine (K-R) positional swaps influence peptide structure and activity. This study addresses this question by investigating two groups of peptides (GF-17 and 17BIPHE2) derived from human cathelicidin LL-37. K-R positional swap showed little effect on minimal inhibitory concentrations of the peptides. However, there are clear differences in bacterial killing kinetics. The membrane permeation patterns vary with peptide and bacterial types, but not changes in fluorescent dyes, salts or pH. In general, the original peptide is more efficient in bacterial killing, but less toxic to human cells, than the K-R swapped peptides, revealing the evolutionary significance of the native sequence for host defense. The characteristic membrane permeation patterns for different bacteria suggest a possible application of these K-R positional-swapped peptides as molecular probes for the type of bacteria. Such differences are related to bacterial membrane compositions: minimal for Gram-positive Staphylococcus aureus with essentially all anionic lipids (cardiolipin and phosphatidylglycerol), but evident for Gram-negative Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli with a mixture of phosphatidylethanolamine and phosphatidylglycerol. Biophysical characterization found similar structures and binding affinities for these peptides in vesicle systems mimicking E. coli and S. aureus. It seems that interfacial arginines of GF-17 are preferred over lysines in bacterial membrane permeation. Our study sheds new light on the design of cationic amphipathic peptides.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina/química , Membrana Celular/efeitos dos fármacos , Lisina/química , Sequência de Aminoácidos , Cardiolipinas/química , Cardiolipinas/isolamento & purificação , Membrana Celular/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Concentração de Íons de Hidrogênio , Klebsiella pneumoniae/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/farmacologia , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/isolamento & purificação , Fosfatidilgliceróis/química , Fosfatidilgliceróis/isolamento & purificação , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Especificidade da Espécie , Staphylococcus aureus/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Catelicidinas
12.
Biofouling ; 33(7): 544-555, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28675109

RESUMO

Infections on implanted medical devices are a challenging problem, especially when bacteria form difficult-to-treat biofilms. Antimicrobial peptides are considered to be a solution due to their potency against antibiotic-resistant superbugs. Previously, the authors' laboratory demonstrated the prevention of staphylococcal biofilm formation in an animal catheter model by injecting merecidin (formerly known as 17BIPHE2), a peptide engineered based on the only human cathelicidin. This study documents an alternative solution via covalent immobilization of FK-16, amino acid sequence FKRIVQRIKDFLRNLV-amide, which corresponds to the major antimicrobial region (residues 17-32) of LL-37. FK-16 is superior to the longer peptide LL-37 in terms of synthesis cost and the shorter peptide KR-12 in terms of activity spectrum. Indeed, the FK16-coated titanium surface showed a broad-spectrum activity against the ESKAPE pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. It also demonstrated anti-adhesion and biofilm inhibition capabilities against both S. aureus and E. coli.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Titânio/química , Acinetobacter baumannii/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Catéteres/microbiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Catelicidinas
13.
Malays J Med Sci ; 24(3): 96-100, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28814938

RESUMO

Superior Mesenteric Artery Syndrome (SMAS) is a rare clinical entity presenting as acute or chronic upper gastrointestinal obstruction. It occurs due to compression of third part of duodenum between abdominal aorta and overlying superior mesenteric artery caused by a decrease in angle between the two vessels. Rapid loss of retroperitoneal fat, in conditions leading to severe weight loss is the main factor responsible for this disorder. Superior mesenteric artery syndrome in association with abdominal tuberculosis has not been reported earlier to the best of our knowledge. Therefore, an unknown cause (SMAS) of upper gastrointestinal obstruction in a patient of abdominal tuberculosis is being presented for the first time through this case report. An imaging diagnosis of SMAS was made on contrast enhanced CT abdomen which also confirmed the clinical suspicion of abdominal tuberculosis in the patient. The patient was managed conservatively and recovered without requiring any surgical intervention for the obstructive symptoms.

15.
Biochim Biophys Acta ; 1838(9): 2160-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24463069

RESUMO

Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Antivirais/química , Membrana Celular/química , Bicamadas Lipídicas/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Biofilmes/efeitos dos fármacos , Permeabilidade da Membrana Celular , Humanos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Catelicidinas
16.
Biochim Biophys Acta ; 1828(2): 677-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23026014

RESUMO

Lactoferrin (LF) is believed to contribute to the host's defense against microbial infections. This work focuses on the antibacterial and antifungal activities of a designed peptide, L10 (WFRKQLKW) by modifying the first eight N-terminal residues of bovine LF by selective homologous substitution of amino acids on the basis of hydrophobicity, L10 has shown potent antibacterial and antifungal properties against clinically isolated extended spectrum beta lactamases (ESBL), producing gram-negative bacteria as well as Candida strains with minimal inhibitory concentrations (MIC) ranging from 1 to 8 µg/mL and 6.5 µg/mL, respectively. The peptide was found to be least hemolytic at a concentration of 800 µg/mL. Interaction with lipopolysaccharide (LPS) and lipid A (LA) suggests that the peptide targets the membrane of gram-negative bacteria. The membrane interactive nature of the peptide, both antibacterial and antifungal, was further confirmed by visual observations employing electron microscopy. Further analyses, by means of propidium iodide based flow cytometry, also supported the membrane permeabilization of Candida cells. The peptide was also found to possess anti-inflammatory properties, by virtue of its ability to inhibit cyclooxygenase-2 (COX-2). L10 therefore emerges as a potential therapeutic remedial solution for infections caused by ESBL positive, gram-negative bacteria and multidrug-resistant (MDR) fungal strains, on account of its multifunctional activities. This study may open up new approach to develop and design novel antimicrobials.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Candida/efeitos dos fármacos , Lactoferrina/química , Animais , Candida/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/microbiologia , Hemólise , Humanos , Cinética , Lipopolissacarídeos/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica/métodos , Peptídeos/química , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície , Fatores de Tempo , beta-Lactamases/metabolismo
17.
Biotechnol Bioeng ; 111(1): 37-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23860860

RESUMO

Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human ß-defensin-28 variant. Mechanistic investigations of the decamers with detergents mimicking the composition of bacterial and mammalian membrane, reveal a correlation between improved antibacterial activity and the increase in tryptophan and positive residue content, while keeping hemolysis low. The potent antimicrobial activity and high cell membrane selective behavior of the two most active decamers, D5 and D6, are attributed to an optimum peptide charge to hydrophobic ratio bestowed by systematic arginine and tryptophan substitution. D5 and D6 show surface localization behavior with binding constants of 1.86 × 10(8) and 2.6 × 10(8) M(-1) , respectively, as determined by isothermal calorimetry measurements. NMR derived structures of D5 and D6 in SDS detergent micelles revealed proximity of Trp and Arg residues in an extended structural scaffold. Such potential cation-π interactions may be critical in cell permeabilization of the AMPs. The fundamental characterization of the engineered decamers provided in this study improves the understanding of structure-activity relationship of short arginine tryptophan rich AMPs, which will pave the way for future de novo design of potent AMPs for therapeutic and biomedical applications.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina/química , Engenharia de Proteínas/métodos , Triptofano/química , Antibacterianos/química , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Arginina/genética , Arginina/metabolismo , Bactérias/citologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular , Ressonância Magnética Nuclear Biomolecular , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Relação Estrutura-Atividade , Triptofano/genética , Triptofano/metabolismo
18.
Cureus ; 16(3): e56826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38654794

RESUMO

Background and objective Basal cell carcinoma (BCC) is the most common malignancy of the skin. Reconstruction of post-excisional defects in BCC should follow the subunit principle for better outcomes. The location of BCC of the face is determined based on facial units; however, very few studies have described the involvement of multiple units and multiple subunits in BCC. In this study, we aimed to provide valuable insights into the management of BCC involving various facial units and subunits, thereby contributing to improved patient care and outcomes. Materials and methods We conducted a retrospective study at the Plastic Surgery Department of the SCB Medical College in Cuttack, Odisha, from January 2020 to January 2022, after obtaining ethical approval from the SCB Medical College IRB (no: 1155). We examined 35 patients with BCC of the face. The inclusion criteria were as follows: patients with early-stage and primary tumors that were mobile, not attached to underlying bone or cartilage, and amenable to surgical resection. Conversely, patients with late-stage, neglected, and recurrent tumors, fixed tumors, or those infiltrating the underlying bone or cartilage were excluded from the study. Data collection involved retrieving pertinent information from medical records, including parameters such as age, sex, tumor site, type of flap utilized, follow-up, and any complications observed. The tumor sites were further divided into six separate groups based on facial aesthetic units: the forehead, the nose, the area around the eyes, the cheek, the mouth, and the area around the ear, each with its own subunits. Results A total of 35 patients were included in this study, comprising 15 males (42.85%) and 20 females (57.15%), with a male-to-female ratio of 1:1.33. The ages of the patients ranged from 42 to 68 years. Among the facial units, the nose was the most commonly involved (in seven cases), while the lip was the least commonly affected (in one case). In 24 cases, a single unit was involved, while 11 cases involved multiple units. Furthermore, single subunits were affected in 18 cases, double subunits in 10 cases, three subunits in five cases, four subunits in one case, and five subunits in another case. Notably, no cases exhibited flap necrosis, wound dehiscence, wound hematoma, or seroma, indicating excellent surgical outcomes. All flaps remained viable, and all patients were followed up for a minimum of one year, with no reported recurrence during the follow-up period ranging from 6 to 18 months, reaffirming the effectiveness of the treatment approach. Conclusions For small, superficial lesions, full-thickness skin grafts (FTSG) are a suitable treatment option. However, when dealing with larger lesions that encompass multiple subunits, the preferred approach involves reconstructing with locoregional flaps. It is essential to plan the procedure carefully, taking into account the goal of positioning the final scar along the junction of facial subunits. This strategic plan aims to achieve superior aesthetic outcomes.

19.
J Phys Chem B ; 128(25): 6049-6058, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38840325

RESUMO

Lasioglossin-III (LL-III) is a potent broad-spectrum antimicrobial peptide used in diverse antimicrobial applications. In this work, coarse-grained and all-atom molecular dynamics simulation strategies were used in tandem to interpret the molecular mechanisms involved in the interfacial dynamics of LL-III and its recombinant variants during interactions with diverse cell membrane systems. Our results indicate that the membrane charges act as the driving force for initiating the membrane-peptide interactions, while the hydrophobic or van der Waals forces help to reinforce the membrane-peptide bindings. The optimized charge-hydrophobicity ratio of the LL-III peptides helps ensure their high specificity toward bacterial membranes compared to mammalian membrane systems, which also helps explain our experimental observations. Overall, we hope that our work gives new insight into the antimicrobial action of LL-III peptides and that the adopted simulation strategy will help other scientists and engineers extract maximal information from complex molecular simulations using minimal computational power.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Simulação de Dinâmica Molecular , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
20.
Biomed Opt Express ; 15(5): 3163-3182, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855663

RESUMO

In this paper, we present a 2-photon imaging probe system featuring a novel fluorescence collection method with improved and reliable efficiency. The system aims to miniaturize the potential of 2-photon imaging in the metabolic and morphological characterization of cervical tissue at sub-micron resolution over large imaging depths into a flexible and clinically viable platform towards the early detection of cancers. Clinical implementation of such a probe system is challenging due to inherently low levels of autofluorescence, particularly when imaging deep in highly scattering tissues. For an efficient collection of fluorescence signals, our probe employs 12 0.5 NA collection fibers arranged around a miniaturized excitation objective. By bending and terminating a multitude of collection fibers at a specific angle, we increase collection area and directivity significantly. Positioning of these fibers allows the collection of fluorescence photons scattered away from their ballistic trajectory multiple times, which offers a system collection efficiency of 4%, which is 55% of what our bench-top microscope with 0.75 NA objective achieves. We demonstrate that the collection efficiency is largely maintained even at high scattering conditions and high imaging depths. Radial symmetry of arrangement maintains uniformity of collection efficiency across the whole FOV. Additionally, our probe can image at different tissue depths via axial actuation by a dc servo motor, allowing depth dependent tissue characterization. We designed our probe to perform imaging at 775 nm, targeting 2-photon autofluorescence from NAD(P)H and FAD molecules, which are often used in metabolic tissue characterization. An air core photonic bandgap fiber delivers laser pulses of 100 fs duration to the sample. A miniaturized objective designed with commercially available lenses of 3 mm diameter focuses the laser beam on tissue, attaining lateral and axial imaging resolutions of 0.66 µm and 4.65 µm, respectively. Characterization results verify that our probe achieves collection efficiency comparable to our optimized bench-top 2-photon imaging microscope, minimally affected by imaging depth and radial positioning. We validate autofluorescence imaging capability with excised porcine vocal fold tissue samples. Images with 120 µm FOV and 0.33 µm pixel sizes collected at 2 fps confirm that the 300 µm imaging depth was achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA