Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(2): 221-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884807

RESUMO

Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.


Assuntos
Oxirredutases , Ubiquinona , Animais , Camundongos , Drosophila melanogaster , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma , Ubiquinona/metabolismo , Proteínas de Transporte
2.
Anal Chem ; 94(43): 14869-14877, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265183

RESUMO

Reactive oxygen species (ROS) are endogenously generated in live cells and essential for cell signaling. However, excess ROS generation can cause oxidative damage to biomolecules, which are implicated in various human diseases, including aging. Here, we developed an in vivo hydrogen peroxide monitoring method using a genetically encodable peroxidase (APEX2)-based system. We confirmed that APEX2 is activated by endogenous H2O2 and generates phenoxyl radicals to produce biotinylated signals (i.e., biotin-phenol) and fluorescent signals (i.e., AmplexRed), which can be detected using a fluorescence microscope. We observed that all subcellular targeted APEX2s were activated by local H2O2 generation by menadione treatment. Among them, the endoplasmic reticulum lumen and lysosome-targeted APEX2 showed the highest response upon addition of menadione which implies that local H2O2 levels in those spaces are highly increased by menadione treatment. Using APEX2, we also found that a minimum amount of menadione (>10 µM) is required to generate detectable levels of H2O2 in all subcellular compartments. We also checked the local H2O2-quenching effect of N-acetylcysteine using our system. As APEX2 can be genetically expressed in diverse live organisms (e.g., cancer cell lines, mice, fly, worm, and yeast), our method can be effectively used to detect local generation of endogenously produced H2O2 in diverse live models.


Assuntos
Peróxido de Hidrogênio , Vitamina K 3 , Animais , Camundongos , Humanos , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vitamina K 3/farmacologia , Estresse Oxidativo , Fenol
3.
Chembiochem ; 21(7): 924-932, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794116

RESUMO

Studying protein-protein interactions (PPIs) is useful for understanding cellular functions and mechanisms. Evaluating these PPIs under conditions as similar as possible to native conditions can be achieved using photo-crosslinking methods because of their on-demand ability to generate reactive species in situ by irradiation with UV light. Various fusion tag, metabolic incorporation, and amber codon suppression approaches using various crosslinkers containing aryl azide, benzophenone, and diazirines have been applied in live cells. Mass spectrometry and immunological techniques are used to identify crosslinked proteins based on their capture transient and context-dependent interactions. Herein we discuss various incorporation methods and crosslinkers that have been used for interactome mapping in live cells.


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas/química , Raios Ultravioleta , Toxina da Cólera/química , Reagentes de Ligações Cruzadas/metabolismo , Diazometano/análogos & derivados , Diazometano/química , Humanos , Ligases/metabolismo , Lisina/análogos & derivados , Lisina/química , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
4.
Cell Chem Biol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38513646

RESUMO

Fluorescent tagging of biomolecules enables their sensitive detection during separation and determining their subcellular location. In this context, peroxidase-based reactions are actively utilized for signal amplification. To harness this potential, we developed a genetically encodable enzymatic fluorescence signal amplification method using APEX (FLEX). We synthesized a fluorescent probe, Jenfluor triazole (JFT1), which effectively amplifies and restricts fluorescence signals under fixed conditions, enabling fluorescence-based detection of subcellularly localized electron-rich metabolites. Moreover, JFT1 exhibited stable fluorescence signals even under osmium-treated and polymer-embedded conditions, which supported findings from correlative light and electron microscopy (CLEM) using APEX. Using various APEX-conjugated proteins of interest (POIs) targeted to different organelles, we successfully visualized their localization through FLEX imaging while effectively preserving organelle ultrastructures. FLEX provides insights into dynamic lysosome-mitochondria interactions upon exposure to chemical stressors. Overall, FLEX holds significant promise as a sensitive and versatile system for fluorescently detecting APEX2-POIs in multiscale biological samples.

5.
ACS Cent Sci ; 9(8): 1650-1657, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37637744

RESUMO

Chemical reactions for the in situ modification of biomolecules within living cells are under development. Among these reactions, bio-orthogonal reactions such as click chemistry using copper(I) and Staudinger ligation are widely used for specific biomolecule tracking in live systems. However, currently available live cell copper(I)-catalyzed azide/alkyne cycloaddition reactions are not designed in a spatially resolved manner. Therefore, we developed the "GEN-Click" system, which can target the copper(I)-catalyzed azide/alkyne cycloaddition reaction catalysts proximal to the protein of interest and can be genetically expressed in a live cell. The genetically controlled, spatially restricted, metal-catalyzed biorthogonal reaction can be used for proximity biotin labeling of various azido-bearing biomolecules (e.g., protein, phospholipid, oligosaccharides) in living cell systems. Using GEN-Click, we successfully detected local metabolite-transferring events at cell-cell contact sites.

6.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119428, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610614

RESUMO

Peroxidase is a heme-containing enzyme that reduces hydrogen peroxide to water by extracting electron(s) from aromatic compounds via a sequential turnover reaction. This reaction can generate various aromatic radicals in the form of short-lived "spray" molecules. These can be either covalently attached to proximal proteins or polymerized via radical-radical coupling. Recent studies have shown that these peroxidase-generated radicals can be utilized as effective tools for spatial research in biological systems, including imaging studies aimed at the spatial localization of proteins using electron microscopy, spatial proteome mapping, and spatial sensing of metabolites (e.g., heme and hydrogen peroxide). This review may facilitate the wider utilization of these peroxidase-based methods for spatial discovery in cellular biology.


Assuntos
Peróxido de Hidrogênio , Peroxidases , Peroxidases/metabolismo , Heme/metabolismo , Biologia
7.
Analyst ; 137(17): 3921-4, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22751002

RESUMO

A BODIPY-based selective thiophenol probe capable of discriminating aliphatic thiols is reported. The fluorescence off-on effect upon reaction with thiol is elucidated with theoretical calculations. The sensing of thiophenol is associated with a color change from red to yellow and 63-fold enhancement in green fluorescence. Application of the probe for selective thiophenol detection is demonstrated by live cell imaging.


Assuntos
Compostos de Boro/química , Colorimetria , Corantes Fluorescentes/química , Fenóis/análise , Compostos de Sulfidrila/análise , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Modelos Teóricos , Teoria Quântica , Compostos de Sulfidrila/química
8.
Chem Sci ; 13(4): 955-966, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35211260

RESUMO

We developed a proximity photo-crosslinking method (Spotlight) with a 4-azido-N-ethyl-1,8-naphthalimide (AzNP) moiety that can be converted to reactive aryl nitrene species using ambient blue light-emitting diode light. Using an AzNP-conjugated HaloTag ligand (VL1), blue light-induced photo-crosslinked products of various HaloTag-conjugated proteins of interest were detected in subcellular spaces in live cells. Chemical or heat stress-induced dynamic changes in the proteome were also detected, and photo-crosslinking in the mouse brain tissue was enabled. Using Spotlight, we further identified the host interactome of SARS-CoV-2 nucleocapsid (N) protein, which is essential for viral genome assembly. Mass analysis of the VL1-crosslinked product of N-HaloTag in HEK293T cells showed that RNA-binding proteins in stress granules were exclusively enriched in the cross-linked samples. These results tell that our method can reveal the interactome of protein of interest within a short distance in live cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA