Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Therm Biol ; 103: 103151, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35027201

RESUMO

As global temperatures continue to rise due to global change, marine heatwaves are also becoming more frequent and intense, impacting marine biodiversity patterns worldwide. Organisms inhabiting shallow water environments, such as the commercially relevant ditch shrimp Palaemon varians, are expected to be the most affected by rising temperatures. Thus, addressing species' thermal ecology and climate extinction-risk is crucial to foster climate-smart conservation strategies for shallow water ecosystems. Here, we estimated sex-specific upper thermal tolerance limits for P. varians via the Critical Thermal Maximum method (CTmax), using loss of equilibrium as endpoint. We further calculated thermal safety margins for males and females and tested for correlations between upper thermal limits and shrimps' body size. To determine sex-biased variation in P. varians' traits (CTmax, weight and length), we compared trait variation between females and males through the coefficient of variation ratio (lnCVR). Females displayed an average CTmax value 1.8% lower than males (CTmaxfemales = 37.0 °C vs CTmaxmales = 37.7 °C). This finding may be related to the larger body size exhibited by females (156% heavier and 39% larger than males), as both length and weight had a significant effect on CTmax. The high energetic investment of females in offspring may also contribute to the differences recorded in thermal tolerance. Overall, organisms with a smaller body-size displayed a greater tolerance to elevated temperature, thus suggesting that smaller individuals may be positively selected in warmer environments. This selection may result in a reduction of size-at-maturity and shifts in sex ratio, given the sexual dimorphism in body size of shrimps. The thermal safety margin of P. varians was narrow (∼2.2 °C for males and ∼1.5 °C for females), revealing the vulnerability of this species to ocean warming and heatwaves.


Assuntos
Biodiversidade , Evolução Biológica , Tamanho Corporal , Palaemonidae/fisiologia , Termotolerância , Aclimatação , Animais , Mudança Climática , Feminino , Masculino , Oceanos e Mares , Temperatura
2.
Sci Total Environ ; 856(Pt 1): 158732, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122726

RESUMO

Species from shallow marine environments are particularly vulnerable to extreme weather events (heatwaves and extreme rainfall) that can promote abrupt environmental shifts, namely in temperature and salinity (respectively). To assess how these shifts impact species' cellular stress responses (CSR), ditch shrimps Palaemon varians were exposed to a chronic (28 days) thermohaline stress experiment. Three levels of temperature (20, 23 and 26 °C) and two levels of salinity (20 and 40) were tested in a full factorial experiment, and shrimps sampled at the 7th, 14th, 21st and 28th day of exposure. Survival, wet weight (as proxy for growth), and cellular stress biomarkers associated with oxidative stress (LPO - Lipid Peroxidation, GST - Glutathione-S-Transferase, SOD - Superoxide Dismutase, TAC - Total Antioxidant Capacity and CAT - Catalase) and protein denaturation (UBI - Ubiquitin and HSP-70 - Heat Shock Protein 70 kDa) were analysed in shrimps' muscle at each sampling day. Temperature and time of exposure significantly affected biomarker levels, with shrimps exposed to 20 and 26 °C revealing more pronounced differences. No interactions were detected between temperature and salinity, suggesting that these factors display additive effects on shrimps' CSR. Antioxidant agents (CAT and TAC) increased under elevated temperature, while protein denaturation markers (UBI and HSP-70) were mostly affected by time of exposure, decreasing at 28 days. Total protein reserves increased throughout time and no effects on wet weight were observed. A negative correlation between wet weight and HSP-70 was detected, suggesting that HSP-70 levels are dependent on organism size. Peak survival (~73 %) was found under 20 °C and salinity 40 and lower survival (~30-40 %) was associated with higher temperatures (23 and 26 °C) and lower salinity (20). We conclude that P. varians displays some level of acclimation capacity but differences in survival may indicate effects on osmoregulation processes and the need for longer timeframes to fully acclimate to heat and hyposaline stress.


Assuntos
Decápodes , Clima Extremo , Palaemonidae , Animais , Palaemonidae/metabolismo , Plásticos , Antioxidantes , Aclimatação , Decápodes/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biomarcadores/metabolismo
3.
Sci Total Environ ; 861: 160460, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36435249

RESUMO

Marine heatwaves (MHW) are threatening tropical coral reef ecosystems, leading to mass bleaching events worldwide. The combination of heat stress with high irradiance is known to shape the health and redox status of corals, but research is biased toward scleractinian corals, while much less is known on tropical symbiotic soft corals. Here, we evaluated the cellular stress response and the photophysiological performance of the soft coral Sarcophyton cf. glaucum, popularly termed as leather coral, under different global change scenarios. Corals were exposed to different light intensities (high light, low light, ∼662 and 253 µmol photons m-2 s-1) for 30 days (time-point 1) and a subsequent MHW simulation was carried out for 10 days (control 26 vs 32 °C) (time-point 2). Subsequently, corals were returned to control temperature and allowed to recover for 30 days (time-point 3). Photophysiological performance (maximum quantum yield of photosystem II (Fv/Fm), a measure of photosynthetic activity; dark-level fluorescence (F0), as a proxy of chlorophyll a content (Chl a); and zooxanthellae density) and stress biomarkers (total protein, antioxidants, lipid peroxidation, ubiquitin, and heat shock protein 70) were assessed in corals at these three time-points. Corals were especially sensitive to the combination of heat and high light stress, experiencing a decrease in their photosynthetic efficiency under these conditions. Heat stress resulted in bleaching via zooxanthellae loss while high light stress led to pigment (Chl a) loss. This species' antioxidant defenses, and protein degradation were particularly enhanced under heat stress. A recovery was clear for molecular parameters after 30 days of recovery, whereby photophysiological performance required more time to return to basal levels. We conclude that soft corals distributed along intertidal areas, where the light intensity is high, could be especially vulnerable to marine heatwave events, highlighting the need to direct conservation efforts toward these organisms.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Clorofila A , Ecossistema , Recifes de Corais , Luz , Simbiose/fisiologia , Antioxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA