RESUMO
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with fivefold to sixfold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a fivefold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.IMPORTANCEUpdates to COVID-19 vaccine antigens depend on assessing how much vaccine antigens differ antigenically from newer SARS-CoV-2 variants. Human sera from single variant infections are ideal for discriminating antigenic differences among variants, but such primary infection sera are now rare due to high population immunity. It remains unclear whether sera from experimentally infected animals could substitute for human sera for antigenic assessments. This report shows that neutralization titers of variant-matched human and hamster primary infection sera correlate well and recognize variants similarly, indicating that hamster sera can be a proxy for human sera for antigenic assessments. We further show that human sera following an XBB.1.5 booster vaccine broadly neutralized XBB sub-lineage variants but titers were fivefold lower against the more recent JN.1 variant. These findings support updating the current COVID-19 vaccine variant composition and developing a framework for assessing antigenic differences in future variants using hamster primary infection sera.
RESUMO
We compared neutralizing antibody responses to BA.4/5, BQ.1.1, XBB, and XBB.1.5 Omicron severe acute respiratory syndrome coronavirus 2 variants after a bivalent or ancestral coronavirus disease 2019 (COVID-19) messenger RNA booster vaccine or postvaccination infection. We found that the bivalent booster elicited moderately high antibody titers against BA.4/5 that were approximately 2-fold higher against all Omicron variants than titers elicited by the monovalent booster. The bivalent booster elicited low but similar titers against both XBB and XBB.1.5 variants. These findings inform risk assessments for future COVID-19 vaccine recommendations and suggest that updated COVID-19 vaccines containing matched vaccine antigens to circulating divergent variants may be needed.
Assuntos
Formação de Anticorpos , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies decay but persist 6 months postvaccination; lower levels of neutralizing titers persist against Delta than wild-type virus. Of 227 vaccinated healthcare workers tested, only 2 experienced outpatient symptomatic breakthrough infections, despite 59/227 exhibiting serologic evidence of SARS-CoV-2 infection, defined as presence of nucleocapsid protein antibodies.
Assuntos
COVID-19 , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Pessoal de Saúde , Humanos , SARS-CoV-2 , VacinaçãoRESUMO
BACKGROUND: SARS-CoV-2 is a recently emerged pandemic coronavirus (CoV) capable of causing severe respiratory illness. However, a significant number of infected people present as asymptomatic or pauci-symptomatic. In this prospective assessment of at-risk healthcare workers (HCWs) we seek to determine whether pre-existing antibody or T cell responses to previous seasonal human coronavirus (HCoV) infections affect immunological or clinical responses to SARS-CoV-2 infection or vaccination. METHODS: A cohort of 300 healthcare workers, confirmed negative for SARS-CoV-2 exposure upon study entry, will be followed for up to 1 year with monthly serology analysis of IgM and IgG antibodies against the spike proteins of SARS-CoV-2 and the four major seasonal human coronavirus - HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63. Participants will complete monthly questionnaires that ask about Coronavirus Disease 2019 (COVID-19) exposure risks, and a standardized, validated symptom questionnaire (scoring viral respiratory disease symptoms, intensity and severity) at least twice monthly and any day when any symptoms manifest. SARS-CoV-2 PCR testing will be performed any time participants develop symptoms consistent with COVID-19. For those individuals that seroconvert and/or test positive by SARS-CoV-2 PCR, or receive the SARS-CoV-2 vaccine, additional studies of T cell activation and cytokine production in response to SARS-CoV-2 peptide pools and analysis of Natural Killer cell numbers and function will be conducted on that participant's cryopreserved baseline peripheral blood mononuclear cells (PBMCs). Following the first year of this study we will further analyze those participants having tested positive for COVID-19, and/or having received an authorized/licensed SARS-CoV-2 vaccine, quarterly (year 2) and semi-annually (years 3 and 4) to investigate immune response longevity. DISCUSSION: This study will determine the frequency of asymptomatic and pauci-symptomatic SARS-CoV-2 infection in a cohort of at-risk healthcare workers. Baseline and longitudinal assays will determine the frequency and magnitude of anti-spike glycoprotein antibodies to the seasonal HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, and may inform whether pre-existing antibodies to these human coronaviruses are associated with altered COVID-19 disease course. Finally, this study will evaluate whether pre-existing immune responses to seasonal HCoVs affect the magnitude and duration of antibody and T cell responses to SARS-CoV-2 vaccination, adjusting for demographic covariates.
Assuntos
COVID-19/imunologia , Pessoal de Saúde/estatística & dados numéricos , SARS-CoV-2/imunologia , Soroconversão , Vacinação/estatística & dados numéricos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções Assintomáticas , Vacinas contra COVID-19/imunologia , Coronavirus/imunologia , Reações Cruzadas , Humanos , Estudos Prospectivos , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologiaRESUMO
BACKGROUND: Immunoglobulin E (IgE)-mediated anaphylaxis is a potentially fatal condition in which allergy effector cells rapidly discharge pre-formed inflammatory mediators. Treatments that address the immune component of allergic anaphylaxis are inadequate. Helminths have been previously shown to suppress effector cell function; however, their ability to treat pre-existing allergy remains unclear. OBJECTIVE: To evaluate the ability of chronic helminth infection to protect against anaphylaxis in previously sensitized mice. METHODS: A sublethal model of anaphylaxis was used, in which BALB/c mice were sensitized by three intraperitoneal (i.p.) injections of OVA/alum. Temperature drop was then monitored after systemic OVA challenge in uninfected mice and in mice infected chronically with Litomosoides sigmodontis, a tissue-invasive filarial nematode. RESULTS: Litomosoides sigmodontis-infected mice exhibited significantly lower serum levels of mMCP-1 and were less hypothermic at 30-minute post-challenge compared to uninfected OVA-challenged controls. Characterization of anaphylaxis revealed that FcÔR1 and mast cells were required for hypothermia and elevated serum mMCP-1. OVA-IgE and OVA-IgG1 serum levels were not significantly altered by L sigmodontis infection, and experiments with IL-10-/- mice demonstrated that IL-10 was not required for protection against anaphylaxis. However, peritoneal mast cell numbers were significantly lower in infected mice, and those that were present exhibited decreased granularity by flow cytometry and marked depletion of intracytoplasmic granules by light microscopy. Mast cells from infected mice had lower expression of the activation markers CD200R and CD63 and contained significantly lower basal stores of histamine. CONCLUSIONS: Chronic L sigmodontis infection protects against anaphylaxis, likely due to reduction in mast cell numbers and depletion of pre-formed inflammatory mediators in remaining mast cells.
Assuntos
Anafilaxia/imunologia , Degranulação Celular/imunologia , Filariose/imunologia , Filarioidea/imunologia , Mastócitos/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Doença Crônica , Filariose/genética , Filariose/patologia , Interleucina-10/genética , Interleucina-10/imunologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos KnockoutRESUMO
Allergy is a major public health concern, the main treatment for which is symptomatic relief with anti-inflammatory drugs. A key clinical challenge is to induce specific tolerance in order to control allergen-specific memory B and T cells, and specifically block effector cell responses. Our lab recently developed antigen-specific regulatory T-cell (Treg) therapies as a treatment for adverse responses. Recently, we created a chimeric antigen receptor (CAR) approach in which we engineered a target protein antigen, ovalbumin (OVA), linked with the transmembrane and signal transduction domains, CD28-CD3ζ to directly target B cells and sensitized mast cells in an allergy model. We named this receptor "BAR" for B-cell Antibody Receptor. Murine or human Tregs, transduced with a BAR containing OVA or control Tregs expressing an unrelated antigen, were successfully expanded in vitro and tested in the murine OVA-alum allergy model with measurable titers of anti-OVA IgE. Because BAR Tregs express the target antigen and could interact with specific IgE on sensitized mast cells, we first demonstrated that intravenously injected OVA-BAR Tregs did not directly lead to a drop in temperature or release of mediators in plasma indicative of anaphylaxis. Forty-eight hours later, mice were challenged intraperitoneally with 200⯵g OVA to induce an anaphylactic reaction, and temperature immediately measured for 30â¯min. We found that OVA-BAR Tregs protected mice from hypothermia, whereas mice given control BARs (expressing an unrelated antigen) or PBS showed substantial temperature drops indicative of anaphylaxis when systemically challenged with OVA. Importantly, this effect was also demonstrated in a passive anaphylaxis model in which mice that received anti-OVA IgE antibody were protected from hypothermia when treated with OVA-BAR Tregs prior to systemic OVA challenge. These results provide proof of principle that engineered allergen-specific T-regulatory cells can provide clinical protection against severe allergic reactions in individuals already IgE-sensitized to an allergen.
Assuntos
Anafilaxia/prevenção & controle , Ovalbumina/imunologia , Linfócitos T Reguladores/metabolismo , Alérgenos/imunologia , Animais , Feminino , Tolerância Imunológica/imunologia , Imunização Passiva , Masculino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
BACKGROUND: Rush desensitization can provide short-term tolerance to individuals who are allergic to certain medications in instances where other therapeutic interventions are limited. While rush desensitization (DS) is typically successful in preventing adverse type I hypersensitivity reactions, the mechanism of allergic protection remains unknown. Given the rise in prevalence of individuals displaying multiple allergies, understanding the impact of rush DS on "bystander" allergens, or additional allergens to which an individual is sensitized, could help inform clinical recommendations. OBJECTIVE: To evaluate the effect of rush DS on bystander sensitization. MATERIALS AND METHODS: We used a murine model of rush DS, whereby BALB/c mice were sensitized to ovalbumin (OVA) and desensitized through repeated intraperitoneal injections of OVA. Using a local anaphylaxis assay, we measured ear swelling by Evans blue extravasation following intradermal challenge. In studies to measure the impact on bystander antigens, a modified protocol was used in which mice were dually sensitized to OVA and Keyhole limpet hemocyanin (KLH), and densensitized to either OVA or KLH prior to allergic challenge. RESULTS: The immunological effects of rush DS were independent of changes in Th1 and Th2 cytokine production and circulating OVA-IgE levels. Instead, rush DS resulted in subclinical degranulation of mast cells prior to challenge. In our dual sensitization model, rush DS with a single antigen conferred protection against allergic challenge to a secondary antigen. Bystander protection required prior sensitization, as DS with an irrelevant antigen did not impact allergic responsiveness. CONCLUSIONS AND CLINICAL RELEVANCE: We reveal that a key mechanism of rush DS protection against allergic responsiveness may be the subclinical degranulation of mast cells. Therefore, performing rush DS to a single antigen to which one is IgE-sensitized may be sufficient to desensitize to multiple allergens. Future studies could lead to streamlined protocols of rush DS for patients with multiple allergies.
Assuntos
Alérgenos/imunologia , Antígenos/imunologia , Dessensibilização Imunológica , Hipersensibilidade/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Anafilaxia/diagnóstico , Anafilaxia/imunologia , Anafilaxia/metabolismo , Animais , Biomarcadores , Degranulação Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Hipersensibilidade/diagnóstico , Hipersensibilidade/metabolismo , Hipersensibilidade/terapia , Tolerância Imunológica , Imunização , Imunoglobulina E/imunologia , Camundongos , Ovalbumina/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Assuntos
Antiparasitários/farmacologia , Parasitos/efeitos dos fármacos , Animais , Descoberta de Drogas , Humanos , Doenças Negligenciadas/parasitologiaRESUMO
In this study, we evaluated the effect chronic helminth infection has on allergic disease in mice previously sensitized to OVA. Ten weeks of infection with Litomosoides sigmodontis reduced immunological markers of type I hypersensitivity, including OVA-specific IgE, basophil activation, and mast cell degranulation. Despite these reductions, there was no protection against immediate clinical hypersensitivity following intradermal OVA challenge. However, late-phase ear swelling, due to type III hypersensitivity, was significantly reduced in chronically infected animals. Levels of total IgG2a, OVA-specific IgG2a, and OVA-specific IgG1 were reduced in the setting of infection. These reductions were most likely due to increased Ab catabolism as ELISPOT assays demonstrated that infected animals do not have suppressed Ab production. Ear histology 24 h after challenge showed infected animals have reduced cellular infiltration in the ear, with significant decreases in numbers of neutrophils and macrophages. Consistent with this, infected animals had less neutrophil-specific chemokines CXCL-1 and CXCL-2 in the ear following challenge. Additionally, in vitro stimulation with immune complexes resulted in significantly less CXCL-1 and CXCL-2 production by eosinophils from chronically infected mice. Expression of FcγRI was also significantly reduced on eosinophils from infected animals. These data indicate that chronic filarial infection suppresses eosinophilic responses to Ab-mediated activation and has the potential to be used as a therapeutic for pre-existing hypersensitivity diseases.
Assuntos
Dermatite de Contato/imunologia , Eosinófilos/imunologia , Filariose/imunologia , Filarioidea/imunologia , Hipersensibilidade Imediata/imunologia , Doenças do Complexo Imune/imunologia , Imunoglobulina E/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Basófilos/imunologia , Degranulação Celular/imunologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Orelha/fisiologia , Feminino , Filariose/parasitologia , Gerbillinae , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Terapia de Imunossupressão , Inflamação/imunologia , Contagem de Leucócitos , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/imunologia , Ovalbumina/imunologia , Receptores de IgG/biossínteseRESUMO
The inability to maintain filarial nematodes in long-term in vitro culture greatly limits research into the basic biology of these parasites and hinders in vitro screening of novel anti-filarial agents. In this study, we sought to characterize nutrients that promote the long-term survival of filarial worms in vitro. Using microfilariae (MF) obtained from gerbils infected with Litomosoides sigmodontis, a filarial parasite of rodents, we found that Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) resulted in MF survival of only 5 days. However, co-culturing MF with a mouse endothelial cell line (EOMA) enabled survival for 40 days. Culturing EOMA cells in transwell plates extended MF survival to the same degree as direct co-culture, suggesting that the factors microfilariae require are soluble in nature. Heat inactivation of EOMA conditioned media at 56 °C reduced MF survival by approximately 50%, and heat inactivation at 100 °C reduced survival to 3 days, demonstrating that both heat labile and heat stable factors are involved. EOMA cells require FBS to produce these factors, as conditioned media collected from EOMA cells grown in the absence of FBS failed to prolong survival. The removal of lipids also abrogated survival, indicating MF are likely utilizing lipid factors released by EOMA cells. Dialysis experiments demonstrate that at least some of the required factors are between 0.1 and 1 kDa in size. Importantly, L. sigmodontis adult worms also show significantly extended survival when cultured in EOMA conditioned media. Together, these results suggest that EOMA-produced factors include lipid-containing molecules, heat labile molecules (likely a protein), and micronutrients between 0.1 and 1 kDa in size. These studies have established a cell-free approach to maintaining MF and adult stage filarial worms in long-term in vitro culture and have taken important steps towards biochemically characterizing host-derived nutrients required for parasite survival.
Assuntos
Células Endoteliais/metabolismo , Filariose/parasitologia , Filarioidea/fisiologia , Animais , Linhagem Celular , Análise por Conglomerados , Técnicas de Cocultura , Culicidae , Meios de Cultivo Condicionados , Células Endoteliais/parasitologia , Feminino , Filarioidea/isolamento & purificação , Gerbillinae , Temperatura Alta , Lipídeos/química , Espectrometria de Massas , Camundongos , Microfilárias/fisiologia , Nucleosídeos/metabolismo , Cavidade Pleural/parasitologia , Ratos , Fatores de Tempo , Regulação para CimaRESUMO
Helminth infections are associated with decreased rates of autoimmunity and allergy, and several clinical studies have demonstrated that intentional infection with helminths can reduce symptoms of autoimmune diseases. In contrast, though numerous animal studies have demonstrated that helminth infections ameliorate allergic diseases, clinical trials in humans have not shown benefit. In this article, we review in detail the 2 human studies that have prospectively tested whether helminth infections protect against allergy. We next review the research designs and results obtained from animal studies, and compare these to the human trials. We then postulate possible reasons for the lack of efficacy observed in clinical trials to date and discuss potential future areas of research in this field.
Assuntos
Asma/imunologia , Asma/terapia , Helmintos/imunologia , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunoterapia , Animais , Antígenos de Helmintos/imunologia , Ensaios Clínicos como Assunto , Helmintíase/imunologia , HumanosRESUMO
BACKGROUND: Allergen-specific immunotherapy (ASIT) is used to treat the symptoms of immediate type I hypersensitivity. The mechanisms driving establishment of allergen tolerance are not yet fully understood. OBJECTIVE: The goal of this study was to develop and immunologically characterize 3 murine models of ASIT to simulate protocols currently used to treat patients with type I hypersensitivities. METHODS: Ovalbumin (OVA)-sensitized mice were desensitized to OVA by means of repeated injections of OVA with a rapid, intermediate, or gradual protocol. After desensitization, mice were assessed for clinical sensitivity to OVA, and immunologic parameters were assessed. RESULTS: Mice in all treatment protocols displayed decreased vascular permeability in response to OVA challenge after desensitization. Circulating OVA-specific IgE levels, as well as basophil activation in response to OVA stimulation and IgE cross-linking, were significantly decreased in all treatment groups. Intermediate and gradual protocols, but not rapid desensitization, suppressed splenocyte proliferation and production of IL-4, IL-5, and IFN-γ in response to OVA and polyclonal activation. Similarly, significant increases in IL-10 production, numbers of CD4(+)CD25(+) forkhead box protein 3-positive regulatory T cells, and OVA-specific IgG1 antibody levels were only observed in mice undergoing prolonged ASIT regimens. CONCLUSION: Suppression of IgE-mediated activation is a common feature of all desensitization schedules. Induction of immunoregulatory networks requires prolonged desensitization schedules.
Assuntos
Dessensibilização Imunológica , Hipersensibilidade Imediata/imunologia , Hipersensibilidade Imediata/terapia , Alérgenos/administração & dosagem , Alérgenos/imunologia , Anafilaxia/imunologia , Animais , Basófilos/imunologia , Basófilos/metabolismo , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Hipersensibilidade Imediata/induzido quimicamente , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Imunomodulação , Camundongos , Ovalbumina/efeitos adversos , Baço/citologia , Baço/imunologia , Baço/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismoRESUMO
Recently, a family of innate cells has been identified that respond to IL-25 and IL-33 in murine intestinal helminths. Termed Type 2 innate lymphoid cells (ILC2s) they facilitate the development of Th2 responses responsible for helminth clearance. We evaluated these cells in a tissue-invasive helminth model. Using Litomosides sigmodontis (a strong Th2 polarizing filarial infection) we observed a robust Th2 response in the pleural cavity, where adult worms reside, marked by increased levels of IL-5 and IL-13 in infected mice. In parallel, ILC2s were expanded in the pleural cavity early in the infection, peaking during the pre-patent period. L. sigmodontis also elicits a strong systemic Th2 response, which includes significantly increased levels of IgG1, IgE and IL-5 in the plasma of infected mice. Although ILC2s were expanded locally, they were not expanded in the spleen, blood, or mediastinal lymph nodes in response to L. sigmodontis infection, suggesting that ILC2s function primarily at the site of infection. The increase in ILC2s in the pleural cavity and the expansion in Th2 responses indicates a probable role for these cells in initiating and maintaining the Th2 response and highlights the importance of these cells in helminth infections and their role in Th2 immunity.
Assuntos
Filariose/imunologia , Filarioidea/imunologia , Cavidade Pleural/citologia , Células Th2/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Anti-Helmínticos/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Feminino , Gerbillinae , Linfonodos/citologia , Linfonodos/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Mediastino , Camundongos , Camundongos Endogâmicos BALB C , Cavidade Pleural/imunologia , Cavidade Pleural/parasitologia , Baço/citologia , Baço/imunologia , Células Th2/citologia , Irrigação TerapêuticaRESUMO
SUMMARY Filarial worms cause highly morbid diseases such as elephantiasis and river blindness. Since the 1940s, researchers have conducted vaccine trials in 27 different animal models of filariasis. Although no vaccine trial in a permissive model of filariasis has provided sterilizing immunity, great strides have been made toward developing vaccines that could block transmission, decrease pathological sequelae, or decrease susceptibility to infection. In this review, we have organized, to the best of our ability, all published filaria vaccine trials and reviewed them in the context of the animal models used. Additionally, we provide information on the life cycle, disease phenotype, concomitant immunity, and natural immunity during primary and secondary infections for 24 different filaria models.
Assuntos
Filariose/prevenção & controle , Filarioidea/imunologia , Vacinas/farmacologia , Animais , Modelos Animais de Doenças , Vacinas/químicaRESUMO
Basophils play a key role in the development and effector phases of type 2 immune responses in both allergic diseases and helminth infections. This study shows that basophils become less responsive to IgE-mediated stimulation when mice are chronically infected with Litomosoides sigmodontis, a filarial nematode, and Schistosoma mansoni, a blood fluke. Although excretory/secretory products from microfilariae of L. sigmodontis suppressed basophils in vitro, transfer of microfilariae into mice did not result in basophil suppression. Rather, reduced basophil responsiveness, which required the presence of live helminths, was found to be dependent on host IL-10 and was accompanied by decreases in key IgE signaling molecules known to be downregulated by IL-10. Given the importance of basophils in the development of type 2 immune responses, these findings help explain the mechanism by which helminths protect against allergy and may have broad implications for understanding how helminth infections alter other disease states in people.
Assuntos
Basófilos/imunologia , Filariose/imunologia , Filarioidea/imunologia , Interleucina-10/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Animais , Basófilos/metabolismo , Doença Crônica , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Feminino , Filariose/genética , Filariose/metabolismo , Filarioidea/metabolismo , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/genética , Esquistossomose mansoni/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th2/imunologia , Células Th2/metabolismoRESUMO
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-ß alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-ß, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-ß.
Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Diabetes Mellitus Tipo 1/parasitologia , Filariose/imunologia , Filariose/parasitologia , Filarioidea/imunologia , Células Th1/imunologia , Fator de Crescimento Transformador beta/biossíntese , Animais , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Filariose/metabolismo , Interleucina-10/biossíntese , Interleucina-10/fisiologia , Interleucina-4/deficiência , Interleucina-4/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/parasitologia , Linfócitos T Reguladores/patologia , Células Th1/metabolismo , Células Th1/parasitologia , Fator de Crescimento Transformador beta/fisiologiaRESUMO
PURIFY-OBS-1 is an observational study evaluating the safety and efficacy of Seraph 100® Microbind Affinity Blood Filter (Seraph 100) use for COVID-19 patients with respiratory failure admitted to the intensive care unit (ICU). The Seraph 100 is a hemoperfusion device containing heparin-coated beads that can bind to, and reduce levels of, some circulating pathogens and inflammatory molecules. This study evaluated whether treatment with the Seraph 100 affected circulating and mucosal antibody levels in critically ill COVID-19 subjects. SARS-CoV-2 anti-spike and anti-nucleocapsid IgG and IgA levels in serum were evaluated at enrollment and on days 1, 4, 7, and 28 after Seraph 100 application, while anti-spike and nucleocapsid IgG, IgA, and secretory IgA levels in tracheal aspirates were evaluated at enrollment and on days 1, 2, 3, 7, and 28. Serum samples were also collected from the pre- and post-filter lines at 1 and 4 h following Seraph 100 application to evaluate the direct impact of the filter on circulating antibody levels. Treatment with the Seraph 100 did not alter the levels of circulating or mucosal antibodies in critically ill COVID-19 subjects admitted to the ICU.
RESUMO
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
RESUMO
Introduction: We sought to determine pre-infection correlates of protection against SARS-CoV-2 post-vaccine inzfections (PVI) acquired during the first Omicron wave in the United States. Methods: Serum and saliva samples from 176 vaccinated adults were collected from October to December of 2021, immediately before the Omicron wave, and assessed for SARS-CoV-2 Spike-specific IgG and IgA binding antibodies (bAb). Sera were also assessed for bAb using commercial assays, and for neutralization activity against several SARS-CoV-2 variants. PVI duration and severity, as well as risk and precautionary behaviors, were assessed by questionnaires. Results: Serum anti-Spike IgG levels assessed by research assay, neutralization titers against Omicron subvariants, and low home risk scores correlated with protection against PVIs after multivariable regression analysis. Commercial assays did not perform as well as research assay, likely due to their lower dynamic range. Discussion: In the 32 participants that developed PVI, anti-Spike IgG bAbs correlated with lower disease severity and shorter duration of illness.
Assuntos
COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Anticorpos Antivirais , Imunoglobulina GRESUMO
Antigens obtained from the intestinal tract of filarial nematodes have been proposed as potential safe and effective vaccine candidates. Because they may be 'hidden' from the immune response during natural infection, yet accessible by antibodies induced by vaccination, intestinal antigens may have a low potential for eliciting allergic responses when vaccinating previously infected individuals. Despite prior promising data, vaccination with intestinal antigens has yet to be tested in a permissive model of filariasis. In this study we investigated the efficacy of vaccination with filarial intestinal antigens in the permissive Litomosoides sigmodontis BALB/c model of filariasis, and we evaluated the extent to which these antigens are recognized by the immune system during and after infection. Infected BALB/c mice developed lower IgG antibody responses to soluble intestinal antigens (GutAg) than to soluble antigens of whole worms (LsAg). Similarly, GutAg induced less proliferation and less production of IL-4 and IFNγ from splenocytes of infected mice than LsAg. In contrast to these differences, active infection resulted in equivalent levels of circulating GutAg-specific IgE and LsAg-specific IgE levels. Consistent with this, basophil activation, as assessed by flow cytometric staining of intracellular basophil IL-4 expression, was equivalent in response to GutAg and LsAg. Vaccination with GutAg adsorbed to CpG/alum induced GutAg specific IgG1 and IgG2A production, with GutAg specific IgG titers greater than 5-fold higher than those measured in previously infected animals. Despite this response to GutAg vaccination, vaccinated mice harbored similar parasite burdens 8 weeks post infection when compared to non-vaccinated controls. These studies demonstrate that soluble antigens obtained from the intestinal tracts of L. sigmodontis have some qualities of 'hidden' antigens, but they still sensitize mice to allergic reactions and fail to protect against future infection when given as a vaccine adsorbed to alum/CPG.