Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
AIDS Behav ; 28(7): 2444-2453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878135

RESUMO

We investigated the association between early sexual debut and HIV infection among adolescents and young adults. Analyzing data from nationally representative Population-Based HIV Impact Assessment (PHIA) surveys in 11 African countries, the research employed a multivariate logistic regression model to assess the relationship between the early sexual debut and new HIV infections in the age group of 10-24 years. The results revealed a significant and robust association, indicating that young individuals who experienced early sexual debut were approximately 2.65 times more likely to contract HIV than those who did not, even after accounting for other variables. These findings align with prior research suggesting that early initiation of sexual activity may increase vulnerability to HIV infection due to factors such as biological susceptibility and risky behaviors like low condom use and multiple sexual partners. The implications of these findings for HIV prevention strategies are substantial, suggesting that interventions aimed at delaying sexual debut could be an effective component in reducing HIV risk for this population. Targeted sex education programs that address the risks of early sexual debut may play a pivotal role in these prevention efforts. By employing a comprehensive approach, there is a possibility to advance efforts towards ending AIDS by 2030.


Assuntos
Infecções por HIV , Assunção de Riscos , Comportamento Sexual , Parceiros Sexuais , Humanos , Adolescente , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Masculino , Feminino , Comportamento Sexual/estatística & dados numéricos , Adulto Jovem , África/epidemiologia , Modelos Logísticos , Fatores de Risco , Criança , Preservativos/estatística & dados numéricos , Fatores Etários , Adulto
2.
Proc Natl Acad Sci U S A ; 117(7): 3388-3396, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015103

RESUMO

Optical microscopy for biomedical samples requires expertise in staining to visualize structure and composition. Midinfrared (mid-IR) spectroscopic imaging offers label-free molecular recording and virtual staining by probing fundamental vibrational modes of molecular components. This quantitative signal can be combined with machine learning to enable microscopy in diverse fields from cancer diagnoses to forensics. However, absorption of IR light by common optical imaging components makes mid-IR light incompatible with modern optical microscopy and almost all biomedical research and clinical workflows. Here we conceptualize an IR-optical hybrid (IR-OH) approach that sensitively measures molecular composition based on an optical microscope with wide-field interferometric detection of absorption-induced sample expansion. We demonstrate that IR-OH exceeds state-of-the-art IR microscopy in coverage (10-fold), spatial resolution (fourfold), and spectral consistency (by mitigating the effects of scattering). The combined impact of these advances allows full slide infrared absorption images of unstained breast tissue sections on a visible microscope platform. We further show that automated histopathologic segmentation and generation of computationally stained (stainless) images is possible, resolving morphological features in both color and spatial detail comparable to current pathology protocols but without stains or human interpretation. IR-OH is compatible with clinical and research pathology practice and could make for a cost-effective alternative to conventional stain-based protocols for stainless, all-digital pathology.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imagem Óptica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Mama/química , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/patologia , Computadores , Feminino , Humanos , Microscopia
3.
J Digit Imaging ; 36(5): 2148-2163, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430062

RESUMO

The emergence of various deep learning approaches in diagnostic medical image segmentation has made machines capable of accomplishing human-level accuracy. However, the generalizability of these architectures across patients from different countries, Magnetic Resonance Imaging (MRI) scans from distinct vendors, and varying imaging conditions remains questionable. In this work, we propose a translatable deep learning framework for diagnostic segmentation of cine MRI scans. This study aims to render the available SOTA (state-of-the-art) architectures domain-shift invariant by utilizing the heterogeneity of multi-sequence cardiac MRI. To develop and test our approach, we curated a diverse group of public datasets and a dataset obtained from private source. We evaluated 3 SOTA CNN (Convolution neural network) architectures i.e., U-Net, Attention-U-Net, and Attention-Res-U-Net. These architectures were first trained on a combination of three different cardiac MRI sequences. Next, we examined the M&M (multi-center & mutli-vendor) challenge dataset to investigate the effect of different training sets on translatability. The U-Net architecture, trained on the multi-sequence dataset, proved to be the most generalizable across multiple datasets during validation on unseen domains. This model attained mean dice scores of 0.81, 0.85, and 0.83 for myocardial wall segmentation after testing on unseen MyoPS (Myocardial Pathology Segmentation) 2020 dataset, AIIMS (All India Institute of Medical Sciences) dataset and M&M dataset, respectively. Our framework achieved Pearson's correlation values of 0.98, 0.99, and 0.95 between the observed and predicted parameters of end diastole volume, end systole volume, and ejection fraction, respectively, on the unseen Indian population dataset.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Imagem Cinética por Ressonância Magnética/métodos , Índia , Processamento de Imagem Assistida por Computador/métodos
4.
Proc Natl Acad Sci U S A ; 115(25): E5651-E5660, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866827

RESUMO

Histopathology based on spatial patterns of epithelial cells is the gold standard for clinical diagnoses and research in carcinomas; although known to be important, the tissue microenvironment is not readily used due to complex and subjective interpretation with existing tools. Here, we demonstrate accurate subtyping from molecular properties of epithelial cells using emerging high-definition Fourier transform infrared (HD FT-IR) spectroscopic imaging combined with machine learning algorithms. In addition to detecting four epithelial subtypes, we simultaneously delineate three stromal subtypes that characterize breast tumors. While FT-IR imaging data enable fully digital pathology with rich information content, the long spectral scanning times required for signal averaging and processing make the technology impractical for routine research or clinical use. Hence, we developed a confocal design in which refractive IR optics are designed to provide high-definition, rapid spatial scanning and discrete spectral tuning using a quantum cascade laser (QCL) source. This instrument provides simultaneously high resolving power (2-µm pixel size) and high signal-to-noise ratio (SNR) (>1,300), providing a speed increase of ∼50-fold for obtaining classified results compared with present imaging spectrometers. We demonstrate spectral fidelity and interinstrument operability of our developed instrument by accurate analysis of a 100-case breast tissue set that was analyzed in a day, considerably speeding research. Clinical breast biopsies typical of a patients' caseload are analyzed in ∼1 hour. This study paves the way for comprehensive tumor-microenvironment analyses in feasible time periods, presenting a critical step in practical label-free molecular histopathology.


Assuntos
Neoplasias da Mama/patologia , Microscopia Confocal/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Microambiente Tumoral/fisiologia , Algoritmos , Mama/fisiologia , Humanos , Lasers Semicondutores
5.
Analyst ; 144(8): 2635-2642, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30839958

RESUMO

Infrared (IR) spectroscopic imaging, utilizing both the molecular and structural disease signatures, enables extensive profiling of tumors and their microenvironments. Here, we examine the relative merits of using either the fingerprint or the high frequency regions of the IR spectrum for tissue histopathology. We selected a complex model as a test case, evaluating both stromal and epithelial segmentation for various breast pathologies. IR spectral classification in each of these spectral windows is quantitatively assessed by estimating area under the curve (AUC) of the receiver operating characteristic curve (ROC) for pixel level accuracy and images for diagnostic ability. We found only small differences, though some that may be sufficiently important in diagnostic tasks to be clinically significant, between the two regions with the fingerprint region-based classifiers consistently emerging as more accurate. The work provides added evidence and comparison with fingerprint region, complex models, and previously untested tissue type (breast) - that the use of restricted spectral regions can provide high accuracy. Our study indicates that the fingerprint region is ideal for epithelial and stromal models to obtain high pixel level accuracies. Glass slides provide a limited spectral feature set but provides accurate information at the patient level.


Assuntos
Mama/anatomia & histologia , Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/patologia , Tecido Conjuntivo/anatomia & histologia , Tecido Conjuntivo/patologia , Epitélio/anatomia & histologia , Epitélio/patologia , Humanos , Hiperplasia/patologia , Modelos Biológicos , Curva ROC , Espectrofotometria Infravermelho/métodos
6.
Anal Chem ; 90(15): 8845-8855, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29939013

RESUMO

Nanoscale topological imaging using atomic force microscopy (AFM) combined with infrared (IR) spectroscopy (AFM-IR) is a rapidly emerging modality to record correlated structural and chemical images. Although the expectation is that the spectral data faithfully represents the underlying chemical composition, the sample mechanical properties affect the recorded data (known as the probe-sample-interaction effect). Although experts in the field are aware of this effect, the contribution is not fully understood. Further, when the sample properties are not well-known or when AFM-IR experiments are conducted by nonexperts, there is a chance that these nonmolecular properties may affect analytical measurements in an uncertain manner. Techniques such as resonance-enhanced imaging and normalization of the IR signal using ratios might improve fidelity of recorded data, but they are not universally effective. Here, we provide a fully analytical model that relates cantilever response to the local sample expansion which opens several avenues. We demonstrate a new method for removing probe-sample-interaction effects in AFM-IR images by measuring the cantilever responsivity using a mechanically induced, out-of-plane sample vibration. This method is then applied to model polymers and mammary epithelial cells to show improvements in sensitivity, accuracy, and repeatability for measuring soft matter when compared to the current state of the art (resonance-enhanced operation). Understanding of the sample-dependent cantilever responsivity is an essential addition to AFM-IR imaging if the identification of chemical features at nanoscale resolutions is to be realized for arbitrary samples.


Assuntos
Células Epiteliais/citologia , Microscopia de Força Atômica/instrumentação , Polímeros/análise , Espectrofotometria Infravermelho/instrumentação , Algoritmos , Linhagem Celular , Células Epiteliais/química , Desenho de Equipamento , Humanos
8.
Small ; 12(42): 5845-5861, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27545321

RESUMO

Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition.

9.
Sci Rep ; 14(1): 12699, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830932

RESUMO

Medical image segmentation has made a significant contribution towards delivering affordable healthcare by facilitating the automatic identification of anatomical structures and other regions of interest. Although convolution neural networks have become prominent in the field of medical image segmentation, they suffer from certain limitations. In this study, we present a reliable framework for producing performant outcomes for the segmentation of pathological structures of 2D medical images. Our framework consists of a novel deep learning architecture, called deep multi-level attention dilated residual neural network (MADR-Net), designed to improve the performance of medical image segmentation. MADR-Net uses a U-Net encoder/decoder backbone in combination with multi-level residual blocks and atrous pyramid scene parsing pooling. To improve the segmentation results, channel-spatial attention blocks were added in the skip connection to capture both the global and local features and superseded the bottleneck layer with an ASPP block. Furthermore, we introduce a hybrid loss function that has an excellent convergence property and enhances the performance of the medical image segmentation task. We extensively validated the proposed MADR-Net on four typical yet challenging medical image segmentation tasks: (1) Left ventricle, left atrium, and myocardial wall segmentation from Echocardiogram images in the CAMUS dataset, (2) Skin cancer segmentation from dermoscopy images in ISIC 2017 dataset, (3) Electron microscopy in FIB-SEM dataset, and (4) Fluid attenuated inversion recovery abnormality from MR images in LGG segmentation dataset. The proposed algorithm yielded significant results when compared to state-of-the-art architectures such as U-Net, Residual U-Net, and Attention U-Net. The proposed MADR-Net consistently outperformed the classical U-Net by 5.43%, 3.43%, and 3.92% relative improvement in terms of dice coefficient, respectively, for electron microscopy, dermoscopy, and MRI. The experimental results demonstrate superior performance on single and multi-class datasets and that the proposed MADR-Net can be utilized as a baseline for the assessment of cross-dataset and segmentation tasks.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Imageamento por Ressonância Magnética/métodos
10.
Front Med (Lausanne) ; 11: 1345611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903819

RESUMO

Burkitt Lymphoma (BL) is a highly treatable cancer. However, delayed diagnosis of BL contributes to high mortality in BL endemic regions of Africa. Lack of enough pathologists in the region is a major reason for delayed diagnosis. The work described in this paper is a proof-of-concept study to develop a targeted, open access AI tool for screening of histopathology slides in suspected BL cases. Slides were obtained from a total of 90 BL patients. 70 Tonsillectomy samples were used as controls. We fine-tuned 6 pre-trained models and evaluated the performance of all 6 models across different configurations. An ensemble-based consensus approach ensured a balanced and robust classification. The tool applies novel features to BL diagnosis including use of multiple image magnifications, thus enabling use of different magnifications of images based on the microscope/scanner available in remote clinics, composite scoring of multiple models and utilizing MIL with weak labeling and image augmentation, enabling use of relatively low sample size to achieve good performance on the inference set. The open access model allows free access to the AI tool from anywhere with an internet connection. The ultimate aim of this work is making pathology services accessible, efficient and timely in remote clinics in regions where BL is endemic. New generation of low-cost slide scanners/microscopes is expected to make slide images available immediately for the AI tool for screening and thus accelerate diagnosis by pathologists available locally or online.

11.
Appl Spectrosc ; 76(4): 428-438, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35296146

RESUMO

Advances in infrared (IR) spectroscopic imaging instrumentation and data science now present unique opportunities for large validation studies of the concept of histopathology using spectral data. In this study, we examine the discrimination potential of IR metrics for different histologic classes to estimate the sample size needed for designing validation studies to achieve a given statistical power and statistical significance. Next, we present an automated annotation transfer tool that can allow large-scale training/validation, overcoming the limitations of sparse ground truth data with current manual approaches by providing a tool to transfer pathologist annotations from stained images to IR images across diagnostic categories. Finally, the results of a combination of supervised and unsupervised analysis provide a scheme to identify diagnostic groups/patterns and isolating pure chemical pixels for each class to better train complex histopathological models. Together, these methods provide essential tools to take advantage of the emerging capabilities to record and utilize large spectroscopic imaging datasets.


Assuntos
Espectrofotometria Infravermelho
12.
Nat Commun ; 11(1): 3225, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591515

RESUMO

Atomic force microscopy-infrared (AFM-IR) spectroscopic imaging offers non-perturbative, molecular contrast for nanoscale characterization. The need to mitigate measurement artifacts and enhance sensitivity, however, requires narrowly-defined and strict sample preparation protocols. This limits reliable and facile characterization; for example, when using common substrates such as Silicon or glass. Here, we demonstrate a closed-loop (CL) piezo controller design for responsivity-corrected AFM-IR imaging. Instead of the usual mode of recording cantilever deflection driven by sample expansion, the principle of our approach is to maintain a zero amplitude harmonic cantilever deflection by CL control of a subsample piezo. We show that the piezo voltage used to maintain a null deflection provides a reliable measure of the local IR absorption with significantly reduced noise. A complete analytical description of the CL operation and characterization of the controller for achieving robust performance are presented. Accurate measurement of IR absorption of nanothin PMMA films on glass and Silicon validates the robust capability of CL AFM-IR in routine mapping of nanoscale molecular information.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31681737

RESUMO

Current histopathological diagnosis involves human expert interpretation of stained images for diagnosis. This process is prone to inter-observer variability, often leading to low concordance rates amongst pathologists across many types of tissues. Further, since structural features are mostly just defined for epithelial alterations during tumor progression, the use of associated stromal changes is limited. Here we sought to examine whether digital analysis of commonly used hematoxylin and eosin-stained images could provide precise and quantitative metrics of disease from both epithelial and stromal cells. We developed a convolutional neural network approach to identify epithelial breast cells from their microenvironment. Second, we analyzed the microenvironment to further observe different constituent cells using unsupervised clustering. Finally, we categorized breast cancer by the combined effects of stromal and epithelial inertia. Together, the work provides insight and evidence of cancer association for interpretable features from deep learning methods that provide new opportunities for comprehensive analysis of standard pathology images.

14.
PLoS One ; 14(4): e0205219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017894

RESUMO

Chemical hyperspectral imaging (HSI) data is naturally high dimensional and large. There are thus inherent manual trade-offs in acquisition time, and the quality of data. Minimum Noise Fraction (MNF) developed by Green et al. [1] has been extensively studied as a method for noise removal in HSI data. It too, however entails a manual speed-accuracy trade-off, namely the process of manually selecting the relevant bands in the MNF space. This process currently takes roughly around a month's time for acquiring and pre-processing an entire TMA with acceptable signal to noise ratio. We present three approaches termed 'Fast MNF', 'Approx MNF' and 'Rand MNF' where the computational time of the algorithm is reduced, as well as the entire process of band selection is fully automated. This automated approach is shown to perform at the same level of accuracy as MNF with now large speedup factors, resulting in the same task to be accomplished in hours. The different approximations produced by the three algorithms, show the reconstruction accuracy vs storage (50×) and runtime speed (60×) trade-off. We apply the approach for automating the denoising of different tissue histology samples, in which the accuracy of classification (differentiating between the different histologic and pathologic classes) strongly depends on the SNR (signal to noise ratio) of recovered data. Therefore, we also compare the effect of the proposed denoising algorithms on classification accuracy. Since denoising HSI data is done unsupervised, we also use a metric that assesses the quality of denoising in the image domain between the noisy and denoised image in the absence of ground truth.


Assuntos
Algoritmos , Técnicas de Preparação Histocitológica , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Humanos
15.
Biotechnol Prog ; 30(4): 967-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778085

RESUMO

Biotech unit operations are often characterized by a large number of inputs (operational parameters) and outputs (performance parameters) along with complex correlations among them. A typical biotech process starts with the vial of the cell bank, ends with the final product, and has anywhere from 15 to 30 such unit operations in series. Besides the above-mentioned operational parameters, raw material attributes can also impact process performance and product quality as well as interact among each other. Multivariate data analysis (MVDA) offers an effective approach to gather process understanding from such complex datasets. Review of literature suggests that the use of MVDA is rapidly increasing, fuelled by the gradual acceptance of quality by design (QbD) and process analytical technology (PAT) among the regulators and the biotech industry. Implementation of QbD and PAT requires enhanced process and product understanding. In this article, we first discuss the most critical issues that a practitioner needs to be aware of while performing MVDA of bioprocessing data. Next, we present a step by step procedure for performing such analysis. Industrial case studies are used to elucidate the various underlying concepts. With the increasing usage of MVDA, we hope that this article would be a useful resource for present and future practitioners of MVDA.


Assuntos
Biotecnologia , Análise Multivariada , Humanos
16.
Biotechnol Prog ; 28(5): 1308-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22888107

RESUMO

Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance.


Assuntos
Biotecnologia/instrumentação , Cromatografia de Afinidade/instrumentação , Resinas Sintéticas/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Biotecnologia/métodos , Cromatografia de Afinidade/métodos , Proteína Estafilocócica A/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA