Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 32(1): 440-452, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28928248

RESUMO

Osteocytes are master orchestrators of bone remodeling; they control osteoblast and osteoclast activities both directly via cell-to-cell communication and indirectly via secreted factors, and they are the main postnatal source of sclerostin and RANKL (receptor activator of NF-kB ligand), two regulators of osteoblast and osteoclast function. Despite progress in understanding osteocyte biology and function, much remains to be elucidated. Recently developed osteocytic cell lines-together with new genome editing tools-has allowed a closer look at the biology and molecular makeup of these cells. By using single-cell cloning, we identified genes that are associated with high Sost/sclerostin expression and analyzed their regulation and function. Unbiased transcriptome analysis of high- vs. low-Sost/sclerostin-expressing cells identified known and novel genes. Dmp1 (dentin matrix protein 1), Dkk1 (Dickkopf WNT signaling pathway inhibitor 1), and Phex were among the most up-regulated known genes, whereas Srpx2, Cd200, and carbonic anhydrase III (CAIII) were identified as novel markers of differentiated osteocytes. Aspn, Enpp2, Robo2, Nov, and Serpina3g were among the transcripts that were most significantly suppressed in high-Sost cells. Considering that CAII was recently identified as being regulated by Sost/sclerostin and capable of controlling mineral homeostasis, we focused our attention on CAIII. Here, we report that CAIII is highly expressed in osteocytes, is regulated by parathyroid hormone both in vitro and in vivo, and protects osteocytes from oxidative stress.-Shi, C., Uda, Y., Dedic, C., Azab, E., Sun, N., Hussein, A. I., Petty, C. A., Fulzele, K., Mitterberger-Vogt, M. C., Zwerschke, W., Pereira, R., Wang, K., Divieti Pajevic, P. Carbonic anhydrase III protects osteocytes from oxidative stress.


Assuntos
Anidrase Carbônica III/metabolismo , Osteócitos/metabolismo , Estresse Oxidativo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Anidrase Carbônica III/genética , Linhagem Celular , Sobrevivência Celular , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Teriparatida/farmacologia , Transcriptoma
2.
Cell Death Discov ; 8(1): 443, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329012

RESUMO

Misalignment of physiological circadian rhythms promotes obesity which is characterized by white adipose tissue (WAT) expansion. Differentiation of Adipose stem/progenitor cells (ASCs) contributes to WAT increase but the importance of the cellular clock in this process is incompletely understood. In the present study, we reveal the role of the circadian transcription factor Aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) in human ASCs, isolated from subcutaneous (s)WAT samples of patients undergoing routine elective plastic abdominal surgery. We show that circadian synchronization by serum-shock or stimulation with adipogenic stimuli leads to a different expression pattern of ARNTL2 relative to its well-studied paralogue ARNTL1. We demonstrate that ARNTL2 mRNA is downregulated in ASCs upon weight-loss (WL) whereas ARNTL2 protein is rapidly induced in the course of adipogenic differentiation and highly abundant in adipocytes. ARNTL2 protein is maintained in ASCs cooperatively by mechanistic Target of Rapamycin (mTOR) and Mitogen-activated Protein Kinase (MAPK) signalling pathways while ARNTL2 functions as an inhibitor on both circuits, leading to a feedback mechanism. Consistently, ectopic overexpression of ARNTL2 repressed adipogenesis by facilitating the degradation of ARNTL1, inhibition of Kruppel-Like Factor 15 (KLF15) gene expression and down-regulation of the MAPK-CCAAT/enhancer-binding protein ß (C/EBPß) axis. Western blot analysis of sWAT samples from normal-weight, obese and WL donors revealed that ARNTL2 protein was solely elevated by WL compared to ARNTL1 which underscores unique functions of both transcription factors. In conclusion, our study reveals ARNTL2 to be a WL-regulated inhibitor of adipogenesis which might provide opportunities to develop strategies to ameliorate obesity.

3.
Cell Death Dis ; 10(6): 411, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138786

RESUMO

The differentiation of adipose stem/progenitor cells (ASCs) into adipocytes contributes to adipose tissue expansion in obesity. This process is regulated by numerous signalling pathways including MAPK signalling. In the present study, we show that weight loss (WL) interventions induce upregulation of Sprouty1 (SPRY1), a negative regulator of MAPK signalling, in human ASCs and elucidate the role of the Sprouty1/MAPK interaction for adipogenic differentiation. We found that the Sprouty1 protein levels are low in proliferating ASCs, increasing in density arrested ASCs at the onset of adipogenic differentiation and decreasing in the course of adipogenesis. Knock-down (KD) of Sprouty1 by RNA interference led to elevated MAPK activity and reduced expression of the early adipogenic transcription factor CCAAT/enhancer-binding protein ß (C/EBP ß), concomitant with an abrogation of adipogenesis. Intriguingly, co-treatment of Sprouty1 KD ASCs with differentiation medium and the pharmacological MEK inhibitor U0126 blunted ERK phosphorylation; however, failed to rescue adipogenic differentiation. Thus, the effects of the Sprouty1 KD are not reversed by inhibiting MAPK signalling although the inhibition of MAPK signalling by U0126 did not prevent adipogenic differentiation in wild type ASCs. In conclusion, we show that Sprouty1 is induced after WL in ASCs of formerly obese people acting as a negative regulator of MAPK signalling, which is necessary to properly trigger adipogenesis at early stages by a C/EBP ß dependent mechanism.


Assuntos
Adipogenia/genética , Tecido Adiposo/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Células-Tronco/metabolismo , Redução de Peso/genética , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Adolescente , Adulto , Butadienos/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Cultivadas , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Nitrilas/farmacologia , Obesidade/metabolismo , Fosfoproteínas/genética , Células-Tronco/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Adulto Jovem
4.
Stem Cell Res ; 22: 1-12, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28549249

RESUMO

To precisely characterize CD146 in adipose stromal/progenitor cells (ASCs) we sorted the stromal vascular faction (SVF) of human abdominal subcutaneous white adipose tissue (sWAT) according to cell surface (cs) expression of CD146, DLK1 and CD34. This test identified three main SVF cell populations: ~50% cs-DLK1-/cs-CD34+/cs-CD146- ASCs, ~7.5% cs-DLK1+/cs-CD34dim/+/cs-CD146+ and ~7.5% cs-DLK1+/cs-CD34dim/+/cs-CD146- cells. All cells contained intracellular CD146. Whole mount fluorescent IHC staining of small vessels detected CD146+ endothelial cells (CD31+/CD34+/CD146+) and pericytes (CD31-/CD34-/CD146+ ASCs). The cells in the outer adventitial layer showed the typical ASC morphology, were strongly CD34+ and contained low amounts of intracellular CD146 protein (CD31-/CD34+/CD146+). Additionally, we detected wavy CD34-/CD146+ and CD34dim/CD146+ cells. CD34dim/CD146+ cells were slightly more bulky than CD34-/CD146+ cells. Both CD34-/CD146+ and CD34dim/CD146+ cells were detached from the inner pericyte layer and protruded into the outer adventitial layer. Cultured early passage ASCs contained low levels of CD146 mRNA, which was expressed in two different splicing variants, at a relatively high amount of the CD146-long form and at a relatively low amount of the CD146-short form. ASCs contained low levels of CD146 protein, which consisted predominantly long form and a small amount of short form. The CD146 protein was highly stable, and the majority of the protein was localized in the Golgi apparatus. In conclusion, the present study contributes to a better understanding of the spatial localization of CD34+/CD146+ and CD34-/CD146+ cells in the adipose niche of sWAT and identifies CD146 as intracellular protein in cs-DLK1-/cs-CD34+/cs-CD146- ASCs.


Assuntos
Adipócitos/metabolismo , Antígeno CD146/biossíntese , Células Estromais/metabolismo , Adipócitos/citologia , Antígenos CD34/biossíntese , Antígenos CD34/genética , Antígeno CD146/genética , Proteínas de Ligação ao Cálcio , Diferenciação Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA