Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2400883121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980908

RESUMO

Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1ß secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.


Assuntos
Cisteína , Peptídeos e Proteínas de Sinalização Intracelular , Lipoilação , Proteínas de Ligação a Fosfato , Piroptose , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cisteína/metabolismo , Animais , Camundongos , Citocinas/metabolismo , Células HEK293 , Inflamassomos/metabolismo , Gasderminas
2.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648465

RESUMO

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Assuntos
Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células Fotorreceptoras Retinianas Bastonetes , Retinose Pigmentar , Rodopsina , Animais , Rodopsina/metabolismo , Rodopsina/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Camundongos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Cílios/metabolismo , Cílios/patologia
3.
Mol Cell Proteomics ; 22(12): 100666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839702

RESUMO

The application of integrated systems biology to the field of structural biology is a promising new direction, although it is still in the infant stages of development. Here we report the use of single particle cryo-EM to identify multiple proteins from three enriched heterogeneous fractions prepared from human liver mitochondrial lysate. We simultaneously identify and solve high-resolution structures of nine essential mitochondrial enzymes with key metabolic functions, including fatty acid catabolism, reactive oxidative species clearance, and amino acid metabolism. Our methodology also identified multiple distinct members of the acyl-CoA dehydrogenase family. This work highlights the potential of cryo-EM to explore tissue proteomics at the atomic level.


Assuntos
Mitocôndrias , Proteômica , Humanos , Mitocôndrias/metabolismo , Fígado/metabolismo , Oxirredução
4.
Anal Chem ; 96(7): 3077-3086, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38344941

RESUMO

Isoaspartic acid (isoAsp) is a common protein modification that spontaneously arises from asparagine or aspartic acid and has been linked to various diseases and health conditions. However, current methods for identifying isoAsp sites in proteins often suffer from ambiguity and have not gained widespread adoption. We developed a novel method that exclusively labels isoAsp with deuterium. This method capitalizes on the unique structural characteristics of isoAsp residues, which possess a free α-carboxyl group and can form an oxazolone ring. Once the oxazolone ring forms, it facilitates racemization at the Cα-position, incorporating a deuteron from a D2O solvent. The sites of deuterium-incorporated isoAsp in proteins can be unequivocally determined by comparing the precursor and product ion masses of the peptides from proteins reacted in H2O and D2O. The effectiveness of this method has been demonstrated through its application to model proteins lysozyme and rituximab. Furthermore, we have confirmed that the isoAsp deuterium-labeling reaction efficiently labels both l- and d-isoAsp without distinction, as well as isoglutamic acid (isoGlu), for which no effective detection methods currently exist.


Assuntos
Oxazolona , Peptídeos , Deutério , Sequência de Aminoácidos , Peptídeos/química , Espectrometria de Massas/métodos , Proteínas , Ácido Isoaspártico/análise , Ácido Isoaspártico/química , Ácido Isoaspártico/metabolismo
5.
Am J Pathol ; 191(10): 1805-1821, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214506

RESUMO

This study tested the hypothesis that diabetes promotes a greater than normal cytosolic calcium level in rod cells that activates a Ca2+-sensitive protease, calpain, resulting in oxidative stress and inflammation, two pathogenic factors of early diabetic retinopathy. Nondiabetic and 2-month diabetic C57Bl/6J and calpain1 knockout (Capn1-/-) mice were studied; subgroups were treated with a calpain inhibitor (CI). Ca2+ content was measured in photoreceptors using Fura-2. Retinal calpain expression was studied by quantitative RT-PCR and immunohistochemistry. Superoxide and expression of inflammatory proteins were measured using published methods. Proteomic analysis was conducted on photoreceptors isolated from untreated diabetic mice or treated daily with CI for 2 months. Cytosolic Ca2+ content was increased twofold in photoreceptors of diabetic mice as compared with nondiabetic mice. Capn1 expression increased fivefold in photoreceptor outer segments of diabetic mice. Pharmacologic inhibition or genetic deletion of Capn1 significantly suppressed diabetes-induced oxidative stress and expression of proinflammatory proteins in retina. Proteomics identified a protein (WW domain-containing oxidoreductase [WWOX]) whose expression was significantly increased in photoreceptors from mice diabetic for 2 months and was inhibited with CI. Knockdown of Wwox using specific siRNA in vitro inhibited increase in superoxide caused by the high glucose. These results suggest that reducing Ca2+ accumulation, suppressing calpain activation, and/or reducing Wwox up-regulation are novel targets for treating early diabetic retinopathy.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Retinopatia Diabética/patologia , Inflamação/patologia , Estresse Oxidativo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Animais , Calpaína/genética , Linhagem Celular , Retinopatia Diabética/complicações , Retinopatia Diabética/genética , Retinopatia Diabética/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/farmacologia , Inflamação/complicações , Inflamação/genética , Inflamação/fisiopatologia , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Retina/patologia , Índice de Gravidade de Doença , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Oxidorredutase com Domínios WW/metabolismo
6.
Biochemistry ; 60(9): 643-647, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33428379

RESUMO

The anthrax toxin protective antigen (PA), the membrane binding and pore-forming component of the anthrax toxin, was studied using 19F NMR. We site-specifically labeled PA with p-fluorophenylalanine (pF-Phe) at Phe427, a critically important residue that comprises the ϕ-clamp that is required for translocation of edema factor (EF) and lethal factor (LF) into the host cell cytosol. We utilized 19F NMR to follow low-pH-induced structural changes in the prepore, alone and bound to the N-terminal PA binding domain of LF, LFN. Our studies indicate that pF-Phe427 is dynamic in the prepore state and then becomes more dynamic in the transition to the pore. An increase in dynamic behavior at the ϕ-clamp may provide the necessary room for movement needed in translocating EF and LF into the cell cytosol.


Assuntos
Antígenos de Bactérias/química , Toxinas Bacterianas/química , Imagem por Ressonância Magnética de Flúor-19/métodos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Conformação Proteica
7.
Anal Chem ; 93(45): 14985-14995, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34735131

RESUMO

Identifying the targets of a drug is critical to understand the mechanism of action and predicts possible side effects. The conventional approach is capturing interacting proteins by affinity purification. However, it requires drugs to be immobilized to a solid support or derivatized with chemical moieties used for pulling down interacting proteins. Such covalent modifications to drugs may mask a critical recognition site for or alter the binding affinity to their targets. To overcome the drawback, several methods that do not require covalent modifications to drugs have been developed. These methods identify targets by detecting proteins whose thermodynamic stability is enhanced in the presence of drugs. Although the utility of these methods has been demonstrated, the difficulty in identifying low abundant targets is the common problem of these methods. We have developed a new target identification method that increases the likelihood of identifying low abundant targets. The method uses histidine-hydrogen deuterium exchange (His-HDX) as a readout technique to probe the changes in protein stability induced by drugs. The workflow involves incubating cell lysates in various concentrations of a protein denaturant in the presence and absence of a drug in D2O followed by digestion of the proteins, enrichment of His-containing peptides, and analysis of the enriched His-peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The developed method was successfully applied to identify the interaction between endogenously expressed MAPK14 and its inhibitor in HEK293 cell lysates. The implementation of selective enrichment of histidine-containing peptides in the workflow was a key that enabled identifying the MAPK14-inhibitor interaction.


Assuntos
Medição da Troca de Deutério , Histidina , Cromatografia Líquida , Deutério , Interações Medicamentosas , Células HEK293 , Humanos , Hidrogênio , Espectrometria de Massas em Tandem
8.
Biochemistry ; 59(5): 671-681, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31957446

RESUMO

Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated by proteolysis of the N-terminus, which exposes a tethered ligand that interacts with the receptor. Numerous studies have focused on the signaling pathways mediated by PARs. However, the structural basis for initiation of these pathways is unknown. Here, we describe a strategy for the expression and purification of PAR4. This is the first PAR family member to be isolated without stabilizing modifications for biophysical studies. We monitored PAR4 activation with histidine hydrogen-deuterium exchange. PAR4 has nine histidines that are spaced throughout the protein, allowing a global view of solvent accessible and nonaccessible regions. Peptides containing each of the nine His residues were used to determine the t1/2 for each His residue in apo or thrombin-activated PAR4. The thrombin-cleaved PAR4 exhibited a 2-fold increase (p > 0.01) in t1/2 values observed for four histidine residues (His180, His229, His240, and His380), demonstrating that these regions have decreased solvent accessibility upon thrombin treatment. In agreement, thrombin-cleaved PAR4 also was resistant to thermolysin digestion. In contrast, the rate of thermolysin proteolysis following stimulation with the PAR4 activation peptide was the same as that of unstimulated PAR4. Further analysis showed the C-terminus is protected in thrombin-activated PAR4 compared to uncleaved or agonist peptide-treated PAR4. The studies described here are the first to examine the tethered ligand activation mechanism for a PAR family member biophysically and shed light on the overall conformational changes that follow activation of PARs by a protease.


Assuntos
Medição da Troca de Deutério , Histidina/análise , Receptores de Trombina/análise , Humanos , Espectrometria de Massas , Receptores de Trombina/genética , Receptores de Trombina/isolamento & purificação
9.
Nat Chem Biol ; 12(6): 444-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27110679

RESUMO

Usher syndrome type III (USH3), characterized by progressive deafness, variable balance disorder and blindness, is caused by destabilizing mutations in the gene encoding the clarin-1 (CLRN1) protein. Here we report a new strategy to mitigate hearing loss associated with a common USH3 mutation CLRN1(N48K) that involves cell-based high-throughput screening of small molecules capable of stabilizing CLRN1(N48K), followed by a secondary screening to eliminate general proteasome inhibitors, and finally an iterative process to optimize structure-activity relationships. This resulted in the identification of BioFocus 844 (BF844). To test the efficacy of BF844, we developed a mouse model that mimicked the progressive hearing loss associated with USH3. BF844 effectively attenuated progressive hearing loss and prevented deafness in this model. Because the CLRN1(N48K) mutation causes both hearing and vision loss, BF844 could in principle prevent both sensory deficiencies in patients with USH3. Moreover, the strategy described here could help identify drugs for other protein-destabilizing monogenic disorders.


Assuntos
Modelos Animais de Doenças , Proteínas de Membrana/antagonistas & inibidores , Pirazóis/farmacologia , Piridazinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Síndromes de Usher/tratamento farmacológico , Animais , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Pirazóis/uso terapêutico , Piridazinas/síntese química , Piridazinas/química , Piridazinas/uso terapêutico , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Síndromes de Usher/genética
10.
BMC Bioinformatics ; 18(1): 289, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578658

RESUMO

BACKGROUND: N-terminal acetylation is one of the most common protein modifications in eukaryotes and occurs co-translationally when the N-terminus of the nascent polypeptide is still attached to the ribosome. This modification has been shown to be involved in a wide range of biological phenomena such as protein half-life regulation, protein-protein and protein-membrane interactions, and protein subcellular localization. Thus, accurately predicting which proteins receive an acetyl group based on their protein sequence is expected to facilitate the functional study of this modification. As the occurrence of N-terminal acetylation strongly depends on the context of protein sequences, attempts to understand the sequence determinants of N-terminal acetylation were conducted initially by simply examining the N-terminal sequences of many acetylated and unacetylated proteins and more recently by machine learning approaches. However, a complete understanding of the sequence determinants of this modification remains to be elucidated. RESULTS: We obtained curated N-terminally acetylated and unacetylated sequences from the UniProt database and employed a decision tree algorithm to identify the sequence determinants of N-terminal acetylation for proteins whose initiator methionine (iMet) residues have been removed. The results suggested that the main determinants of N-terminal acetylation are contained within the first five residues following iMet and that the first and second positions are the most important discriminator for the occurrence of this phenomenon. The results also indicated the existence of position-specific preferred and inhibitory residues that determine the occurrence of N-terminal acetylation. The developed predictor software, termed NT-AcPredictor, accurately predicted the N-terminal acetylation, with an overall performance comparable or superior to those of preceding predictors incorporating machine learning algorithms. CONCLUSION: Our machine learning approach based on a decision tree algorithm successfully provided several sequence determinants of N-terminal acetylation for proteins lacking iMet, some of which have not previously been described. Although these sequence determinants remain insufficient to comprehensively predict the occurrence of this modification, indicating that further work on this topic is still required, the developed predictor, NT-AcPredictor, can be used to predict N-terminal acetylation with an accuracy of more than 80%.


Assuntos
Algoritmos , Proteínas/metabolismo , Acetilação , Sequência de Aminoácidos , Bases de Dados Factuais , Proteínas/química , Eletricidade Estática
11.
Mol Cell Biochem ; 432(1-2): 7-24, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28303408

RESUMO

Diabetic cardiomyopathy is preceded by mitochondrial alterations, and progresses to heart failure. We studied whether treatment with methylene blue (MB), a compound that was reported to serve as an alternate electron carrier within the mitochondrial electron transport chain (ETC), improves mitochondrial metabolism and cardiac function in type 1 diabetes. MB was administered at 10 mg/kg/day to control and diabetic rats. Both echocardiography and hemodynamic studies were performed to assess cardiac function. Mitochondrial studies comprised the measurement of oxidative phosphorylation and specific activities of fatty acid oxidation enzymes. Proteomic studies were employed to compare the level of lysine acetylation on cardiac mitochondrial proteins between the experimental groups. We found that MB facilitates NADH oxidation, increases NAD+, and the activity of deacetylase Sirtuin 3, and reduces protein lysine acetylation in diabetic cardiac mitochondria. We identified that lysine acetylation on 83 sites in 34 proteins is lower in the MB-treated diabetic group compared to the same sites in the untreated diabetic group. These changes occur across critical mitochondrial metabolic pathways including fatty acid transport and oxidation, amino acid metabolism, tricarboxylic acid cycle, ETC, transport, and regulatory proteins. While the MB treatment has no effect on the activities of acyl-CoA dehydrogenases, it decreases 3-hydroxyacyl-CoA dehydrogenase activity and long-chain fatty acid oxidation, and improves cardiac function. Providing an alternative route for mitochondrial electron transport is a novel therapeutic approach to decrease lysine acetylation, alleviate cardiac metabolic inflexibility, and improve cardiac function in diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Lisina/metabolismo , Azul de Metileno/farmacologia , Mitocôndrias Cardíacas/metabolismo , Acetilação/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Endogâmicos Lew
13.
Proc Natl Acad Sci U S A ; 110(33): 13516-21, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23904475

RESUMO

The ubiquitous inducible transcription factor NF-κB plays central roles in immune and inflammatory responses and in tumorigenesis. Complex posttranslational modifications of the p65 subunit (RelA) are a major aspect of the extremely flexible regulation of NF-κB activity. Although phosphorylation, acetylation, ubiquitination, and lysine methylation of NF-κB have been well described, arginine methylation has not yet been found. We now report that, in response to IL-1ß, the p65 subunit of NF-κB is dimethylated on arginine 30 (R30) by protein-arginine methyltransferase 5 (PRMT5). Expression of the R30A and R30K mutants of p65 substantially decreased the ability of NF-κB to bind to κB elements and to drive gene expression. A model in which dimethyl R30 is placed into the crystal structure of p65 predicts new van der Waals contacts that stabilize intraprotein interactions and indirectly increase the affinity of p65 for DNA. PRMT5 was the only arginine methyltransferase that coprecipitated with p65, and its overexpression increased NF-κB activity, whereas PRMT5 knockdown had the opposite effect. Microarray analysis revealed that ∼85% of the NF-κB-inducible genes that are down-regulated by the R30A mutation are similarly down-regulated by knocking PRMT5 down. Many cytokine and chemokine genes are among these, and conditioned media from cells expressing the R30A mutant of p65 had much less NF-κB-inducing activity than media from cells expressing the wild-type protein. PRMT5 is overexpressed in many types of cancer, often to a striking degree, indicating that high levels of this enzyme may promote tumorigenesis, at least in part by facilitating NF-κB-induced gene expression.


Assuntos
Regulação da Expressão Gênica/genética , Processamento de Proteína Pós-Traducional/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Fator de Transcrição RelA/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Imunoprecipitação , Luciferases , Metilação , Análise em Microsséries , Oligonucleotídeos/genética , Espectrometria de Massas em Tandem
14.
Proc Natl Acad Sci U S A ; 110(32): 13002-7, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878223

RESUMO

Enzymes function by stabilizing reaction transition states; therefore, comparison of the transition states of enzymatic and nonenzymatic model reactions can provide insight into biological catalysis. Catalysis of RNA 2'-O-transphosphorylation by ribonuclease A is proposed to involve electrostatic stabilization and acid/base catalysis, although the structure of the rate-limiting transition state is uncertain. Here, we describe coordinated kinetic isotope effect (KIE) analyses, molecular dynamics simulations, and quantum mechanical calculations to model the transition state and mechanism of RNase A. Comparison of the (18)O KIEs on the 2'O nucleophile, 5'O leaving group, and nonbridging phosphoryl oxygens for RNase A to values observed for hydronium- or hydroxide-catalyzed reactions indicate a late anionic transition state. Molecular dynamics simulations using an anionic phosphorane transition state mimic suggest that H-bonding by protonated His12 and Lys41 stabilizes the transition state by neutralizing the negative charge on the nonbridging phosphoryl oxygens. Quantum mechanical calculations consistent with the experimental KIEs indicate that expulsion of the 5'O remains an integral feature of the rate-limiting step both on and off the enzyme. Electrostatic interactions with positively charged amino acid site chains (His12/Lys41), together with proton transfer from His119, render departure of the 5'O less advanced compared with the solution reaction and stabilize charge buildup in the transition state. The ability to obtain a chemically detailed description of 2'-O-transphosphorylation transition states provides an opportunity to advance our understanding of biological catalysis significantly by determining how the catalytic modes and active site environments of phosphoryl transferases influence transition state structure.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA/química , Ribonuclease Pancreático/química , Biocatálise , Esterificação , Cinética , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Isótopos de Oxigênio/química , Isótopos de Oxigênio/metabolismo , Fosforilação , RNA/metabolismo , Ribonuclease Pancreático/metabolismo
15.
J Proteome Res ; 14(3): 1483-94, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25686393

RESUMO

Little is known regarding how the synthesis and degradation of individual proteins change during the life of an organism. Such knowledge is vital to understanding the aging process. To fill this knowledge gap, we monitored newly synthesized proteins on a proteome scale in Caenorhabditis elegans over time during adulthood using a stable-isotope labeling by amino acids in cell culture (SILAC)-based label-chase approach. For most proteins, the rate of appearance of newly synthesized protein was high during the first 5 days of adulthood, slowed down between the fifth and the 11th days, and then increased again after the 11th day. However, the magnitude of appearance rate differed significantly from protein to protein. For example, the appearance of newly synthesized protein was fast for proteins involved in embryonic development, transcription regulation, and lipid binding/transport, with >70% of these proteins newly synthesized by day 5 of adulthood, whereas it was slow for proteins involved in cellular assembly and motility, such as actin and myosin, with <70% of these proteins newly synthesized even on day 16. The late-life increase of newly synthesized protein was especially high for ribosomal proteins and ATP synthases. We also investigated the effect of RNAi-mediated knockdown of the rpl-9 (ribosomal protein), atp-3 (ATP synthase), and ril-1 (RNAi-induced longevity-1) genes and found that inhibiting the expression of atp-3 and ril-1 beginning in late adulthood is still effective to extend the life span of C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Longevidade
16.
Anal Biochem ; 472: 30-6, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461480

RESUMO

High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack post-translational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work, we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with (15)N,(13)C by providing them with isotopically labeled bacteria. (2)H labeling also was achieved by growing C. elegans in the presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the "test" GPCR to demonstrate the viability of this approach. Although the worms' cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization.


Assuntos
Animais Geneticamente Modificados , Caenorhabditis elegans , Expressão Gênica , Marcação por Isótopo , Rodopsina , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Bovinos , Escherichia coli/genética , Escherichia coli/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rodopsina/biossíntese , Rodopsina/química , Rodopsina/genética
17.
Biochemistry ; 53(38): 6084-91, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25186975

RESUMO

Protective antigen (PA) mediates entry of edema factor (EF) and lethal factor (LF) into the cytoplasmic space of the cells through the formation of a membrane-spanning pore. To do this, PA must initially bind to a host cellular receptor. Recent mass spectrometry analysis of PA using histidine hydrogen-deuterium exchange (His-HDX) has shown that binding of the von Willebrand factor A (vWA) domain of the receptor capillary morphogenesis protein-2 (CMG2) lowers the exchange rates of the imidazole C2 hydrogen of several histidines, suggesting that receptor binding decreases the structural flexibility of PA. Here, using His-HDX and fluorescence as a function of denaturant, and protease susceptibility, we show that binding of the vWA domain of CMG2 largely increases the stability of PA and the effect reaches up to 70 Å from the receptor binding interface. We also show that the pKa values and HDX rates of histidines located in separate domains change upon receptor binding. These results indicate that when one end of the protein is anchored, the structure of PA is tightened, noncovalent interactions are strengthened, and the global stability of the protein increases. These findings suggest that CMG2 may be used to stabilize PA in future anthrax vaccines.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Receptores de Peptídeos/metabolismo , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Concentração de Íons de Hidrogênio , Cinética , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Receptores de Peptídeos/química , Espectrometria de Fluorescência
18.
Biochemistry ; 53(4): 690-701, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24387629

RESUMO

The anthrax protective antigen (PA) is an 83 kDa protein that is one of three protein components of the anthrax toxin, an AB toxin secreted by Bacillus anthracis. PA is capable of undergoing several structural changes, including oligomerization to either a heptameric or octameric structure called the prepore, and at acidic pH a major conformational change to form a membrane-spanning pore. To follow these structural changes at a residue-specific level, we have conducted initial studies in which we have biosynthetically incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied the influence of 5-FTrp labeling on the structural stability of PA and on binding to the host receptor capillary morphogenesis protein 2 (CMG2) using (19)F nuclear magnetic resonance (NMR). There are seven tryptophans in PA, but of the four domains in PA, only two contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and domain 2 (Trp346 and -477). Trp346 is of particular interest because of its proximity to the CMG2 binding interface, and because it forms part of the membrane-spanning pore. We show that the (19)F resonance of Trp346 is sensitive to changes in pH, consistent with crystallographic studies, and that receptor binding significantly stabilizes Trp346 to both pH and temperature. In addition, we provide evidence that suggests that resonances from tryptophans distant from the binding interface are also stabilized by the receptor. Our studies highlight the positive impact of receptor binding on protein stability and the use of (19)F NMR in gaining insight into structural changes in a high-molecular weight protein.


Assuntos
Antígenos de Bactérias/química , Bacillus anthracis/metabolismo , Toxinas Bacterianas/química , Receptores de Peptídeos/química , Triptofano/análogos & derivados , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Cristalografia por Raios X , Corantes Fluorescentes , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Peso Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Desdobramento de Proteína , Temperatura , Termodinâmica , Triptofano/química
19.
J Biol Chem ; 288(32): 22961-71, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798702

RESUMO

In mammalian skeletal muscle, Ca(2+) release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca(2+)-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca(2+) channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in "hot spot" regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues.


Assuntos
Cálcio , Peróxido de Hidrogênio , Proteínas Musculares , Músculo Esquelético , Oxigênio , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/química , Cálcio/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Estrutura Terciária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
20.
J Biol Chem ; 288(21): 15326-41, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23572532

RESUMO

Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4(-/-)Abca4(-/-)Rdh8(-/-) mice displayed milder retinal degenerative phenotypes than Abca4(-/-)Rdh8(-/-) mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.


Assuntos
Proteínas do Olho/metabolismo , Degeneração Macular/metabolismo , Microglia/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retinaldeído/metabolismo , Retinose Pigmentar/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Proteínas do Olho/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Microglia/patologia , Células Fotorreceptoras de Vertebrados/patologia , Retinaldeído/genética , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA