RESUMO
Nucleosome positioning can alter the accessibility of DNA-binding proteins to their cognate DNA elements, and thus its precise control is essential for cell identity and function. Mammalian preimplantation embryos undergo temporal changes in gene expression and cell potency, suggesting the involvement of dynamic epigenetic control during this developmental phase. However, the dynamics of nucleosome organization during early development are poorly understood. In this study, using a low-input MNase-seq method, we show that nucleosome positioning is globally obscure in zygotes but becomes well defined during subsequent development. Down-regulation of the chromatin assembly in embryonic stem cells can partially reverse nucleosome organization into a zygote-like pattern, suggesting a possible link between the chromatin assembly pathway and fuzzy nucleosomes in zygotes. We also reveal that YY1, a zinc finger-containing transcription factor expressed upon zygotic genome activation, regulates the de novo formation of well-positioned nucleosome arrays at the regulatory elements through identifying YY1-binding sites in eight-cell embryos. The YY1-binding regions acquire H3K27ac enrichment around the eight-cell and morula stages, and YY1 depletion impairs the morula-to-blastocyst transition. Thus, our study delineates the remodeling of nucleosome organization and its underlying mechanism during early mouse development.
Assuntos
Nucleossomos , Fatores de Transcrição , Animais , Camundongos , Cromatina , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Mamíferos/genética , Nucleossomos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The promyelocytic leukemia (PML) body is a phase-separated nuclear structure physically associated with chromatin, implying its crucial roles in genome functions. However, its role in transcriptional regulation is largely unknown. We developed APEX-mediated chromatin labeling and purification (ALaP) to identify the genomic regions proximal to PML bodies. We found that PML bodies associate with active regulatory regions across the genome and with â¼300 kb of the short arm of the Y chromosome (YS300) in mouse embryonic stem cells. The PML body association with YS300 is essential for the transcriptional activity of the neighboring Y-linked clustered genes. Mechanistically, PML bodies provide specific nuclear spaces that the de novo DNA methyltransferase DNMT3A cannot access, resulting in the steady maintenance of a hypo-methylated state at Y-linked gene promoters. Our study underscores a new mechanism for gene regulation in the 3D nuclear space and provides insights into the functional properties of nuclear structures for genome function.
Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica , Corpos de Inclusão Intranuclear/genética , Cromossomo Y/genética , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , RNA Helicases DEAD-box/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA Metiltransferase 3A , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células-Tronco Embrionárias/fisiologia , Endonucleases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Corpos de Inclusão Intranuclear/metabolismo , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Enzimas Multifuncionais/genética , Família Multigênica , Estresse Oxidativo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Proteínas/genética , Fatores de Transcrição/genética , Cromossomo Y/metabolismoRESUMO
S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.
Assuntos
Actomiosina , Adesões Focais , Humanos , Adesões Focais/metabolismo , Actomiosina/metabolismo , Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismoRESUMO
Survivin is overexpressed in most cancer cells but is rarely expressed in normal adult tissues. It is associated with poor prognosis and resistance to radiation therapy and chemotherapy. In this study, we designed and synthesized borealin-derived small peptides (Bor peptides) to function as survivin-targeting agents for the diagnosis and treatment of cancers. These peptides exhibited binding affinities for recombinant human survivin (Kd = 49.6-193 nM), with Bor65-75 showing the highest affinity (Kd = 49.6 nM). Fluorescence images of fluorescein isothiocyanate-labeled Bor65-75 showed its co-localization with survivin expression in the human pancreatic cancer cell line, MIA PaCa-2. In the WST-1 assay, cell penetrable nona-d-arginine-conjugated Bor65-75 (r9-Bor65-75) inhibited the growth of MIA PaCa-2 cells and MDA-MB-231 cells (89 and 88% inhibition at 10 µM, respectively), whereas it had almost no effect on the human mammary epithelial cell line, MCF-10A, that inherently does not have high survivin expression. Flow cytometry with annexin V and propidium iodide staining revealed that r9-Bor65-75 induced apoptosis in MIA PaCa-2 cells in a dose-dependent manner. An increase in cleaved poly ADP-ribose polymerase protein expression was observed in MIA PaCa-2 cells exposed to r9-Bor65-75 by western blotting, suggesting that r9-Bor65-75 inhibits cell proliferation by inducing apoptosis. In vivo, r9-Bor65-75 significantly suppressed tumor growth in MIA PaCa-2 xenograft mice, without any marked weight loss. Hence, Bor peptides are promising candidates for the development of cancer imaging and anticancer agents targeting survivin.
Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Survivina , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Proteínas de Ciclo Celular , Neoplasias Pancreáticas/patologia , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Survivin belongs to the inhibitor of apoptosis protein family, which is consistently overexpressed in most cancer cells but rarely expressed in normal adult tissues. Therefore, the detection and inhibition of survivin are regarded as attractive strategies for cancer-specific treatment. In this study, we designed and synthesized 7-19 residues of inner centromere protein (INCENP)-derived small peptides (INC peptides) as novel survivin-targeting agents. The INC peptides showed binding affinity for the human survivin protein (Kd = 91.4-255 nmol L-1 ); INC16-22 , which contains residues 16-22 of INCENP, showed the highest affinity (91.4 nmol L-1 ). Confocal fluorescence imaging showed consistent colocalization of FITC-INC16-22 and survivin in cell lines. Nona-arginine-linked INC16-22 (r9-INC16-22 ) rendered INC16-22 cells penetrable and strongly inhibited cell growth of MIA PaCa-2 cells (52% inhibition at 1.0 µmol L-1 ) and MDA-MB-231 cells (60% inhibition at 10 µmol L-1 ) as determined by MTT assays. The exposure of MIA PaCa-2 cells to 40 µmol L-1 r9-INC16-22 apparently reduced the intracellular protein expression levels of survivin. However, cleaved caspase-3 was significantly increased in cells treated with r9-INC16-22 , even at 10 µmol L-1 , compared to untreated cells. Flow cytometry revealed that r9-INC16-22 strongly induced apoptosis in MIA PaCa-2 cells. These results indicate that the cytotoxic effects of r9-INC16-22 could be mediated mainly through the disruption of survivin-dependent antiapoptotic functions and partly because of the direct degradation of the survivin protein. Our findings suggest that INC peptides can act as useful scaffolds for novel cancer imaging and anticancer agents.
Assuntos
Neoplasias da Mama/diagnóstico por imagem , Proteínas Cromossômicas não Histona/genética , Peptídeos/farmacologia , Survivina/isolamento & purificação , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caspases/química , Caspases/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Cromossômicas não Histona/química , Feminino , Humanos , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/isolamento & purificação , Imagem Molecular/métodos , Peptídeos/síntese química , Peptídeos/química , Survivina/química , Survivina/genéticaRESUMO
Although chromatin condensation is a well-known hallmark of apoptosis, the generation mechanism has not been clarified. Histone H1, a positively-charged abundant nuclear protein, is located in the linker region of chromatin. There are several Histone H1 subtypes that are encoded by variant genes. Using serial histone H1-deletion mutant cells established from the chicken B-cell leukemia line DT40, we found that apoptotic chromatin condensation was decreased in relation to histone H1 protein level and that the chromatin in nuclei prepared from the live null mutant cells had a high accessibility of DNases and transposase. This indicated that linker histone H1 was the general chromatin condensation factor and that the loss of histone H1 generated open chromatin in both apoptotic and live cells.
Assuntos
Apoptose , Sobrevivência Celular , Cromatina/metabolismo , Histonas/metabolismo , Animais , Linhagem Celular , Galinhas , Cromatina/ultraestrutura , Deleção de Genes , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Histonas/genéticaRESUMO
Pluripotency is established through genome-wide reprogramming during mammalian pre-implantation development, resulting in the formation of the naive epiblast. Reprogramming involves both the resetting of epigenetic marks and the activation of pluripotent-cell-specific genes such as Nanog and Oct4 (also known as Pou5f1). The tight regulation of these genes is crucial for reprogramming, but the mechanisms that regulate their expression in vivo have not been uncovered. Here we show that Nanog--but not Oct4--is monoallelically expressed in early pre-implantation embryos. Nanog then undergoes a progressive switch to biallelic expression during the transition towards ground-state pluripotency in the naive epiblast of the late blastocyst. Embryonic stem (ES) cells grown in leukaemia inhibitory factor (LIF) and serum express Nanog mainly monoallelically and show asynchronous replication of the Nanog locus, a feature of monoallelically expressed genes, but ES cells activate both alleles when cultured under 2i conditions, which mimic the pluripotent ground state in vitro. Live-cell imaging with reporter ES cells confirmed the allelic expression of Nanog and revealed allelic switching. The allelic expression of Nanog is regulated through the fibroblast growth factor-extracellular signal-regulated kinase signalling pathway, and it is accompanied by chromatin changes at the proximal promoter but occurs independently of DNA methylation. Nanog-heterozygous blastocysts have fewer inner-cell-mass derivatives and delayed primitive endoderm formation, indicating a role for the biallelic expression of Nanog in the timely maturation of the inner cell mass into a fully reprogrammed pluripotent epiblast. We suggest that the tight regulation of Nanog dose at the chromosome level is necessary for the acquisition of ground-state pluripotency during development. Our data highlight an unexpected role for allelic expression in controlling the dose of pluripotency factors in vivo, adding an extra level to the regulation of reprogramming.
Assuntos
Alelos , Blastocisto/metabolismo , Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Blastocisto/citologia , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Feminino , Impressão Genômica , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Hibridização in Situ Fluorescente , Fator Inibidor de Leucemia/farmacologia , Masculino , Complexo Mediador/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero , Células-Tronco Pluripotentes/citologia , Fatores de Tempo , CoesinasRESUMO
The three-dimensional remodeling of chromatin within nucleus is being recognized as determinant for genome regulation. Recent technological advances in live imaging of chromosome loci begun to explore the biological roles of the movement of the chromatin within the nucleus. To facilitate better understanding of the functional relevance and mechanisms regulating genome architecture, we applied transcription activator-like effector (TALE) technology to visualize endogenous repetitive genomic sequences in mouse cells. The application, called TAL effector-mediated genome visualization (TGV), allows us to label specific repetitive sequences and trace nuclear remodeling in living cells. Using this system, parental origin of chromosomes was specifically traced by distinction of single-nucleotide polymorphisms (SNPs). This review will present our approaches to monitor nuclear dynamics of target sequences and highlights key properties and potential uses of TGV.
Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Marcação de Genes/métodos , Genoma , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Luciferases de Vaga-Lume , Luciferases de Renilla , Camundongos , Dados de Sequência MolecularRESUMO
Methylation-specific fluorescence in situ hybridization (MeFISH) was developed for microscopic visualization of DNA methylation status at specific repeat sequences in individual cells. MeFISH is based on the differential reactivity of 5-methylcytosine and cytosine in target DNA for interstrand complex formation with osmium and bipyridine-containing nucleic acids (ICON). Cell nuclei and chromosomes hybridized with fluorescence-labeled ICON probes for mouse major and minor satellite repeats were treated with osmium for crosslinking. After denaturation, fluorescent signals were retained specifically at satellite repeats in wild-type, but not in DNA methyltransferase triple-knockout (negative control) mouse embryonic stem cells. Moreover, using MeFISH, we successfully detected hypomethylated satellite repeats in cells from patients with immunodeficiency, centromeric instability and facial anomalies syndrome and 5-hydroxymethylated satellite repeats in male germ cells, the latter of which had been considered to be unmethylated based on anti-5-methylcytosine antibody staining. MeFISH will be suitable for a wide range of applications in epigenetics research and medical diagnosis.
Assuntos
Núcleo Celular/genética , Cromossomos de Mamíferos/química , Metilação de DNA , DNA Satélite , Hibridização in Situ Fluorescente/métodos , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Células Cultivadas , Citosina/análogos & derivados , Citosina/análise , Células-Tronco Embrionárias/química , Humanos , Masculino , Camundongos , Espermatozoides/químicaRESUMO
The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
Assuntos
Hepacivirus/fisiologia , Lipídeos/química , Organelas/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , Humanos , Organelas/química , Organelas/ultraestrutura , Proteínas não Estruturais Virais/metabolismoRESUMO
Survivin is highly expressed in most human cancers, making it a promising target for cancer diagnosis and treatment. In this study, we developed peptide probes consisting of Bor65-75, a high-affinity survivin-binding peptide, and a survivin protein segment using peptide linkers as survivin-sensitive fluorescent probes (SSFPs). All conjugates were attached to 5(6)-carboxyfluorescein (FAM) at the C-terminal as a fluorophore and to 4((4(dimethylamino)phenyl)azo)benzoic acid (DABCYL) at the N-terminal as a quencher. Fluorescence (or Förster) resonance energy transfer (FRET) quenching via intramolecular binding of Bor65-75 with survivin protein segment could be diminished by the approach of survivin to SSFPs, which dissociate Bor65-75 from SSPF and increased the distance between FAM and DABCYL. A binding assay using recombinant human survivin protein (rSurvivin) demonstrated moderate to high affinity of SSFPs for survivin (dissociation constants (K d) = 121-1740 nM). Although the SSFPs (0.5 µM) had almost no fluorescence under baseline conditions, a dose-dependent increase in fluorescence intensity was observed in the presence of rSurvivin (0.1-2.0 µM). In particular, the proline-rich SSFP (SSFP5) showed the highest (2.7-fold) fluorescence induction at 2.0 µM survivin compared to the signals in the absence of survivin. Confocal fluorescence imaging demonstrated that SSFP5 exhibited clear fluorescence signals in survivin-positive MDA-MB-231 cells, whereas no marked fluorescence signals were observed in survivin-negative MCF-10A cells. Collectively, these results suggest that SSFPs can be used as survivin-specific FRET imaging probes.
RESUMO
Chromatin accessibility is a hallmark of active regulatory regions and is functionally linked to transcriptional networks and cell identity. However, the molecular mechanisms and networks that govern chromatin accessibility have not been thoroughly studied. Here we conducted a genome-wide CRISPR screening combined with an optimized ATAC-see protocol to identify genes that modulate global chromatin accessibility. In addition to known chromatin regulators like CREBBP and EP400, we discovered a number of previously unrecognized proteins that modulate chromatin accessibility, including TFDP1, HNRNPU, EIF3D and THAP11 belonging to diverse biological pathways. ATAC-seq analysis upon their knockouts revealed their distinct and specific effects on chromatin accessibility. Remarkably, we found that TFDP1, a transcription factor, modulates global chromatin accessibility through transcriptional regulation of canonical histones. In addition, our findings highlight the manipulation of chromatin accessibility as an approach to enhance various cell engineering applications, including genome editing and induced pluripotent stem cell reprogramming.
Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes Reguladoras de GenesRESUMO
Chromatin accessibility is one of the fundamental structures regulating genome functions including transcription and DNA repair. Recent technological advantages to analyze chromatin accessibility begun to explore the dynamics of local chromatin structures. Here I describe protocols for Assay of Transposase-Accessible Chromatin with Visualization (ATAC-see), which allows us to analyze subnuclear localization of accessible chromatin and quantify accessible chromatin at single-cell level.
Assuntos
Cromatina , Transposases , Cromatina/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA/métodos , Transposases/química , Transposases/genéticaRESUMO
The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs.
Assuntos
Imunoprecipitação da Cromatina , Metilação de DNA , Impressão Genômica , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Acoplados a Proteínas G/genética , Animais , Cromossomos de Mamíferos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Feminino , Humanos , Imunoprecipitação , Masculino , Camundongos , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood. To clarify the roles of lipoprotein in the HCV life cycle, we analyzed the effect of apolipoprotein E (ApoE), a component of lipoprotein, on virus production and infectivity. The production of infectious HCV was significantly reduced by the knockdown of ApoE. When an ApoE mutant that fails to be secreted into the culture medium was used, the amount of infectious HCV in the culture medium was dramatically reduced; the infectious HCV accumulated inside these cells, suggesting that infectious HCV must associate with ApoE prior to virus release. We performed rescue experiments in which ApoE isoforms were ectopically expressed in cells depleted of endogenous ApoE. The ectopic expression of the ApoE2 isoform, which has low affinity for the LDL receptor (LDLR), resulted in poor recovery of infectious HCV, whereas the expression of other isoforms, ApoE3 and ApoE4, rescued the production of infectious virus, raising it to an almost normal level. Furthermore, we found that the infectivity of HCV required both the LDLR and scavenger receptor class B, member I (SR-BI), ligands for ApoE. These findings indicate that ApoE is an essential apolipoprotein for HCV infectivity.
Assuntos
Apolipoproteína E2/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Linhagem Celular Tumoral , Hepatite C/genética , Hepatite C/virologia , Humanos , Ligação ProteicaRESUMO
Following fertilization in mammals, the chromatin landscape inherited from the two parental genomes and the nuclear organization are extensively reprogrammed. A tight regulation of nuclear organization is important for developmental success. One main nuclear feature is the organization of the chromosomes in discrete and individual nuclear spaces known as chromosome territories (CTs). In culture cells, their arrangements can be constrained depending on their genomic content (e.g., gene density or repeats) or by specific nuclear constrains such as the periphery or the nucleolus. However, during the early steps of mouse embryonic development, much less is known, specifically regarding how and when the two parental genomes intermingle. Here, we describe a three-dimensional fluorescence in situ hybridization (3D-FISH) for chromosome painting (3D-ChromoPaint) optimized to gain understanding in nuclear organization of specific CTs following fertilization. Our approach preserves the nuclear structure, and the acquired images allow full spatial analysis of interphase chromosome positioning and morphology across the cell cycle and during early development. This method will be useful in understanding the dynamics of chromosome repositioning during development as well as the alteration of chromosome territories upon changes in transcriptional status during key developmental steps. This protocol can be adapted to any other species or organoids in culture.
Assuntos
Blastocisto/citologia , Coloração Cromossômica/métodos , Cromossomos/genética , Hibridização in Situ Fluorescente/métodos , Camundongos/embriologia , Animais , Blastocisto/metabolismo , Blastocisto/ultraestrutura , DNA/genética , Desenvolvimento Embrionário , Imageamento Tridimensional/métodos , Camundongos/genética , Microscopia/métodos , Imagem Óptica/métodosRESUMO
Hepatitis C virus (HCV) establishes a persistent infection and causes chronic hepatitis. Chronic hepatitis patients often develop hepatic cirrhosis and progress to liver cancer. The development of this pathological condition is linked to the persistent infection of the virus. In other words, viral replication/multiplication may contribute to disease pathology. Accumulating clinical studies suggest that HCV infection alters lipid metabolism, and thus causes fatty liver. It has been reported that this abnormal metabolism exacerbates hepatic diseases. Recently, we revealed that lipid droplets play a key role in HCV replication. Understanding the molecular mechanism of HCV replication will help elucidate the pathogenic mechanism and develop preventive measures that inhibit disease manifestation by blocking persistent infection. In this review, we outline recent findings on the function of lipid droplets in the HCV replication cycle and describe the relationship between the development of liver diseases and virus replication.
Assuntos
Hepacivirus/fisiologia , Metabolismo dos Lipídeos/fisiologia , Replicação Viral/fisiologia , Animais , Células/citologia , Células/efeitos dos fármacos , Células/metabolismo , Detergentes/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
Spatiotemporal organization of chromatin within the nucleus has so far remained elusive. Live visualization of nuclear remodeling could be a promising approach to understand its functional relevance in genome functions and mechanisms regulating genome architecture. Recent technological advances in live imaging of chromosomes begun to explore the biological roles of the movement of the chromatin within the nucleus. Here I describe a new technique, called TALE-mediated genome visualization (TGV), which allows us to visualize endogenous repetitive sequence including centromeric, pericentromeric, and telomeric repeats in living cells.