Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(38): 11403-6, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27555528

RESUMO

From the viewpoints of large capacity, long-term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metal-substituted ϵ-Fe2 O3 , ϵ-Ga(III) 0.31 Ti(IV) 0.05 Co(II) 0.05 Fe(III) 1.59 O3 , nanoparticles with an average size of 18 nm. Ga, Ti, and Co cations tune the magnetic properties of ϵ-Fe2 O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7 kOe by introduction of single-ion anisotropy on Co(II) (S=3/2) along the c-axis. The saturation magnetization was increased by 44 % with Ga(III) (S=0) and Ti(IV) (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signal-to-noise ratio compared to the currently used magnetic tape.

2.
Nat Commun ; 3: 1035, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22948817

RESUMO

Magnetic ferrites such as Fe(3)O(4) and Fe(2)O(3) are extensively used in a range of applications because they are inexpensive and chemically stable. Here we show that rhodium-substituted ε-Fe(2)O(3), ε-Rh(x)Fe(2-x)O(3) nanomagnets prepared by a nanoscale chemical synthesis using mesoporous silica as a template, exhibit a huge coercive field (H(c)) of 27 kOe at room temperature. Furthermore, a crystallographically oriented sample recorded an H(c) value of 31 kOe, which is the largest value among metal-oxide-based magnets and is comparable to those of rare-earth magnets. In addition, ε-Rh(x)Fe(2-x)O(3) shows high frequency millimetre wave absorption up to 209 GHz. ε-Rh(0.14)Fe(1.86)O(3) exhibits a rotation of the polarization plane of the propagated millimetre wave at 220 GHz, which is one of the promising carrier frequencies (the window of air) for millimetre wave wireless communications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA