Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Toxicol ; 44(3): 415-427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37846211

RESUMO

The hazards and potency of skin sensitizers are traditionally determined using animal tests such as the local lymph node assay (LLNA); however, significant progress has been made in the development of non-animal test methods addressing the first three mechanistic key events of adverse outcome pathway in skin sensitization. We developed the epidermal sensitization assay (EpiSensA), which is a reconstructed human epidermis-based assay, by measuring four genes related to critical keratinocyte responses during skin sensitization. Four in vitro skin sensitization test methods (EpiSensA, direct peptide reactivity assay [DPRA], KeratinoSens™, and human cell line activation test [h-CLAT]) were systematically evaluated using 136 chemicals including lipophilic chemicals and pre/pro-haptens, which may be related to assay-specific limitations. The constructed database included existing and newly generated data. The EpiSensA showed a broader applicability domain and predicted the hazards with 82.4% and 78.8% accuracy than LLNA and human data. The EpiSensA could detect 76 out of 88 sensitizers at lower concentrations than the LLNA, indicating that the EpiSensA has higher sensitivity for the detection of minor sensitizing constituents. These results confirmed the potential use of the EpiSensA in evaluating a mixture of unknown compositions that can be evaluated by animal tests. To combine different information sources, the reconstructed human epidermis-based testing strategy (RTS) was developed based on weighted multiple information from the EpiSensA and TImes MEtabolism Simulator platform for predicting Skin Sensitization (TIMES-SS; RTSv1) or Organization for Economic Cooperation and Development (OECD) QSAR Toolbox automated workflow (RTSv2). The predictivities of the hazards and Globally Harmonized System (GHS) subcategories were equal to or better than the defined approaches (2 out of 3, integrated testing strategy [ITS]v1, and ITSv2) adopted as OECD Guideline 497.


Assuntos
Alternativas aos Testes com Animais , Dermatite Alérgica de Contato , Animais , Humanos , Alternativas aos Testes com Animais/métodos , Pele , Epiderme , Queratinócitos/metabolismo , Testes Cutâneos , Ensaio Local de Linfonodo , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/metabolismo
2.
J Appl Toxicol ; 44(4): 510-525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37897225

RESUMO

The Epidermal Sensitization Assay (EpiSensA) is a reconstructed human epidermis (RhE)-based gene expression assay for predicting the skin sensitization potential of chemicals. Since the RhE model is covered by a stratified stratum corneum, various kinds of test chemicals, including lipophilic ones and pre-/pro-haptens, can be tested with a route of exposure akin to an in vivo assay and human exposure. This article presents the results of a formally managed validation study of the EpiSensA that was carried out by three participating laboratories. The purpose of this validation study was to assess transferability of the EpiSensA to new laboratories along with its within- (WLR) and between-laboratory reproducibility (BLR). The validation study was organized into two independent stages. As demonstrated during the first stage, where three sensitizers and one non-sensitizer were correctly predicted by all participating laboratories, the EpiSensA was successfully transferred to all three participating laboratories. For Phase I of the second stage, each participating laboratory performed three experiments with an identical set of 15 coded test chemicals resulting in WLR of 93.3%, 93.3%, and 86.7%, respectively. Furthermore, when the results from the 15 test chemicals were combined with those of the additional 12 chemicals tested in Phase II of the second stage, the BLR for 27 test chemicals was 88.9%. Moreover, the predictive capacity among the three laboratories showed 92.6% sensitivity, 63.0% specificity, 82.7% accuracy, and 77.8% balanced accuracy based on murine local lymph node assay (LLNA) results. Overall, this validation study concluded that EpiSensA is easily transferable and sufficiently robust for assessing the skin sensitization potential of chemicals.


Assuntos
Alérgenos , Dermatite Alérgica de Contato , Humanos , Animais , Camundongos , Reprodutibilidade dos Testes , Alérgenos/toxicidade , Epiderme , Pele , Haptenos/toxicidade , Ensaio Local de Linfonodo , Alternativas aos Testes com Animais
3.
Biochem Biophys Res Commun ; 678: 24-32, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37611349

RESUMO

Allergic contact dermatitis (ACD) and atopic dermatitis (AD) are common inflammatory diseases. We previously reported attenuated contact hypersensitivity (CHS) responses in AD model mice using 2,4-dinitrofluorobenzene, reflecting clinical experiments. However, previous studies have not addressed the commonality of findings across haptens and mechanisms focused on dendritic cells (DCs). Thus, this study evaluated CHS responses to fluorescein isothiocyanate (FITC) and DC migration and maturation in the sensitization phase of CHS in AD. CHS responses to FITC were compared between NC/Nga mice without and with AD induction (non-AD and AD mice, respectively). T-cell responses and DC migration and maturation after FITC-induced sensitization were examined in the draining lymph nodes of non-AD and AD mice. AD mice demonstrated reduced CHS responses to FITC under decreased T-cell proliferation following sensitization and interferon-γ production by hapten-specific T cells compared with non-AD mice. In addition, the number of FITC+CD11c+MHC class IIhigh migratory DCs 24 h after FITC sensitization was comparable between non-AD and AD mice. However, FITC+CD11c+MHC class IIhigh migratory DCs in AD mice exhibited lower expression levels of CD80 and CD86 and higher expression levels of PD-L1 and mRNA of transforming growth factor beta than non-AD mice. These findings suggest that attenuated CHS responses may be hapten-independent and the induction of the tolerogenic phenotype of hapten-bearing DCs can contribute to reduced T-cell proliferation after sensitization and CHS responses in AD.


Assuntos
Dermatite Atópica , Dermatite de Contato , Camundongos , Animais , Fluoresceína-5-Isotiocianato , Fenótipo , Fluoresceína , Haptenos , Células Dendríticas
4.
Regul Toxicol Pharmacol ; 139: 105363, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36805912

RESUMO

Risk assessments for cosmetic packaging are required according to the EU Cosmetics Regulation (EC) No. 1223/2009, however, the assessment method is well-established for food packaging but limited for cosmetic packaging. In food packaging assessments, Cramer class III TTC (90 µg/day) is applied as the threshold for systemic toxicity when the Ames test including the process of sample concentration steps provides the negative results. However, the human health risks of mutagenic and carcinogenic migrants at exposure levels where the Ames test with the concentrated samples cannot detect are unclear. In the present study, to confirm the applicability of the Ames test for cosmetic packaging assessments, the toxicological data on 37 candidate migrants with Ames test-positive results was collected. For these migrants, the carcinogenic risk levels through cosmetics use were compared to the detection levels of the Ames test for concentrated samples. Regarding at least 32 migrants, the case study showed the negative result from the Ames test incorporating the sample concentration process would indicate negligible mutagenic and carcinogenic risks of packaging extracts. Therefore, application of the Ames test to cosmetic packaging assessments would be helpful to ensure the safety for mutagenicity and carcinogenicity as well as use Cramer-TTC for systemic toxicity.


Assuntos
Cosméticos , Migrantes , Humanos , Carcinógenos/toxicidade , Plásticos/toxicidade , Limite de Detecção , Cosméticos/toxicidade , Mutagênicos/toxicidade , Mutagênicos/análise , Medição de Risco
5.
Regul Toxicol Pharmacol ; 139: 105358, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36805910

RESUMO

Recently, due to regulatory and ethical demands, new approach methodologies (NAMs), defined approaches (DAs), and read-across (RAx) have been used in the risk assessment of skin sensitization. Integrated testing strategy (ITS)v1 DA, adopted in OECD Guideline No. 497, can be used for skin sensitization potency categorization. However, ITSv1 DA alone is not used for further refinement of the potency prediction based on EC3 (the estimated concentration that produces a stimulation index of 3 in murine local lymph node assay) values. Moreover, there is no explicit approach to incorporating NAM/DA data into RAx to fill the data gap of EC3 values with high confidence. This study developed a strategy incorporating ITSv1 DA into RAx to predict skin sensitization potency: ITSv1-based RAx. To examine the reliability of this novel strategy, a case study with lilial, a fragrance material, was performed. Based on ITSv1-based RAx, the skin sensitization potency of lilial was determined by extrapolating the EC3 value of 9.5% for the suitable analogue bourgeonal, which was close to the historical EC3 value of 8.6%. The result suggested that the strategy can refine the prediction of EC3 values with high confidence and be useful for the risk assessment of skin sensitization.


Assuntos
Dermatite Alérgica de Contato , Animais , Humanos , Camundongos , Dermatite Alérgica de Contato/etiologia , Reprodutibilidade dos Testes , Pele , Ensaio Local de Linfonodo , Medição de Risco/métodos , Proteínas do Olho , Fatores de Transcrição , Proteínas de Homeodomínio
6.
Mod Rheumatol ; 33(5): 868-874, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36124933

RESUMO

Rheumatoid arthritis (RA) has long been characterized by synovitis and bone erosions typically developing symmetrically in small joints. However, recent advances in imaging modalities have indicated frequent association of tenosynovitis with RA, and some consider tenosynovitis to be not just a complication but a major trait of RA. Furthermore, as there are cases with tenosynovitis preceding the clinical detection of inflammatory arthritis in predisposed individuals, tenosynovitis may constitute an important biomarker in defining the pre-RA phase of disease development. Tenosynovitis itself must be treated as it causes functional impairment and physical as well as socioeconomic burden, and its treatment may result in effective prevention of RA development at a pre-arthritic stage. Thus, further efforts need to be taken in detecting and treating tenosynovitis in the pre-RA stage, which can be facilitated by ultrasonography and magnetic resonance imaging.


Assuntos
Artrite Reumatoide , Sinovite , Tenossinovite , Humanos , Tenossinovite/complicações , Tenossinovite/diagnóstico por imagem , Artrite Reumatoide/complicações , Artrite Reumatoide/diagnóstico por imagem , Sinovite/complicações , Sinovite/diagnóstico por imagem , Biomarcadores , Imageamento por Ressonância Magnética/métodos
7.
Crit Rev Toxicol ; 52(1): 51-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35416118

RESUMO

Skin sensitization resulting in allergic contact dermatitis represents an important toxicological endpoint as part of safety assessments. When available substance-specific sensitization data are inadequate, the dermal sensitization threshold (DST) concept has been proposed to set a skin exposure threshold to provide no appreciable risk of skin sensitization. Structure-based DSTs, which include non-reactive, reactive, and high potency category (HPC) DSTs, can be applied to substances with an identified chemical structures. An in vitro data-based "mixture DST" can be applied to mixtures based on data from in vitro test methods, such as KeratinoSens™ and the human Cell Line Activation Test. The purpose of this review article is to discuss the practical use of DSTs for conducting sound sensitization risk assessments to assure the safety of consumer products. To this end, several improvements are discussed in this review. For application of structure-based DSTs, an overall structural classification workflow was developed to exclude the possibility that "HPC but non-reactive" chemicals are misclassified as "non-reactive", because such chemicals should be classified as HPC chemicals considering that HPC rules have been based on the chemical structure of high potency sensitizers. Besides that, an extended application of the mixture DST principle to mixtures that either is cytotoxic or evaluated as positive was proposed. On a final note, we also developed workflows that integrate structure-based and in vitro-based mixture DST. The proposed workflows enable the application of the appropriate DST, which serves as a point of departure in the quantitative sensitization risk assessment.


Assuntos
Dermatite Alérgica de Contato , Linhagem Celular , Dermatite Alérgica de Contato/etiologia , Humanos , Técnicas In Vitro , Medição de Risco/métodos , Pele
8.
Regul Toxicol Pharmacol ; 131: 105169, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447229

RESUMO

The assessment of skin sensitisation is a key requirement in all regulated sectors, with the European Union's regulation of cosmetic ingredients being most challenging, since it requires quantitative skin sensitisation assessment based on new approach methodologies (NAMs). To address this challenge, an in-depth and harmonised understanding of NAMs is fundamental to inform the assessment. Therefore, we compiled a database of NAMs, and in vivo (human and local lymph node assay) reference data. Here, we expanded this database with 41 substances highly relevant for cosmetic industry. These structurally different substances were tested in six NAMs (Direct Peptide Reactivity Assay, KeratinoSens™, human Cell Line Activation Test, U-SENS™, SENS-IS, Peroxidase Peptide Reactivity Assay). Our analysis revealed that the substances could be tested without technical limitations, but were generally overpredicted when compared to reference results. Reasons for this reduced predictivity were explored through pairwise NAM comparisons and association of overprediction with hydrophobicity. We conclude that more detailed understanding of how NAMs apply to a wider range of substances is needed. This would support a flexible and informed choice of NAMs to be optimally applied in the context of a next generation risk assessment framework, ultimately contributing to the characterisation and reduction of uncertainty.


Assuntos
Cosméticos , Dermatite Alérgica de Contato , Alternativas aos Testes com Animais/métodos , Animais , Cosméticos/toxicidade , Bases de Dados Factuais , Dermatite Alérgica de Contato/etiologia , Humanos , Ensaio Local de Linfonodo , Pele
9.
PLoS Pathog ; 15(12): e1008173, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830125

RESUMO

Mouse APOBEC3 (mA3) inhibits murine leukemia virus (MuLV) replication by a deamination-independent mechanism in which the reverse transcription is considered the main target process. However, other steps in virus replication that can be targeted by mA3 have not been examined. We have investigated the possible effect of mA3 on MuLV protease-mediated processes and found that mA3 binds both mature viral protease and Pr180gag-pol precursor polyprotein. Using replication-competent MuLVs, we also show that mA3 inhibits the processing of Pr65 Gag precursor. Furthermore, we demonstrate that the autoprocessing of Pr180gag-pol is impeded by mA3, resulting in reduced production of mature viral protease. This reduction appears to link with the above inefficient Pr65gag processing in the presence of mA3. Two major isoforms of mA3, exon 5-containing and -lacking ones, equally exhibit this antiviral activity. Importantly, physiologically expressed levels of mA3 impedes both Pr180gag-pol autocatalysis and Pr65gag processing. This blockade is independent of the deaminase activity and requires the C-terminal region of mA3. These results suggest that the above impairment of Pr180gag-pol autoprocessing may significantly contribute to the deaminase-independent antiretroviral activity exerted by mA3.


Assuntos
Citidina Desaminase/metabolismo , Proteínas de Fusão gag-pol/metabolismo , Vírus da Leucemia Murina/metabolismo , Infecções por Retroviridae/metabolismo , Replicação Viral/fisiologia , Animais , Produtos do Gene gag/metabolismo , Leucemia Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções Tumorais por Vírus/metabolismo
10.
J Appl Toxicol ; 41(6): 915-927, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33124094

RESUMO

The regulatory community is transitioning to the use of nonanimal methods for dermal sensitization assessments; however, some in vitro assays have limitations in their domain of applicability depending on the properties of chemicals being tested. This study explored the utility of epidermal sensitization assay (EpiSensA) to evaluate the sensitization potential of complex and/or "difficult to test" chemicals. Assay performance was evaluated by testing a set of 20 test chemicals including 10 methacrylate esters, 5 silicone-based compounds, 3 crop protection formulations, and 2 surfactant mixtures; each had prior in vivo data plus some in silico and in vitro data. Using the weight of evidence (WoE) assessments by REACH Lead Registrants, 14 of these chemicals were sensitizers and, six were nonsensitizers based on in vivo studies (local lymph node assay [LLNA] and/or guinea pig studies). The EpiSensA correctly predicted 16/20 materials with three test materials as false positive and one silane as false negative. This silane, classified as weak sensitizer via LLNA, also gave a "false negative" result in the KeratinoSens™ assay. Overall, consistent with prior evaluations, the EpiSensA demonstrated an accuracy level of 80% relative to available in vivo WoE assessments. In addition, potency classification based on the concentration showing positive marker gene expression of EpiSensA was performed. The EpiSensA correctly predicted the potency for all seven sensitizing methacrylates classified as weak potency via LLNA (EC3 ≥ 10%). In summary, EpiSensA could identify dermal sensitization potential of these test substances and mixtures, and continues to show promise as an in vitro alternative method for dermal sensitization.


Assuntos
Agroquímicos/toxicidade , Testes Cutâneos , Alérgenos , Alternativas aos Testes com Animais/métodos , Animais , Bioensaio , Linhagem Celular , Dermatite Alérgica de Contato , Epiderme , Cobaias , Haptenos , Humanos , Técnicas In Vitro , Ensaio Local de Linfonodo , Pele
11.
Org Biomol Chem ; 18(10): 1978-1986, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32104826

RESUMO

Development of an intracellular delivery method for functional peptides via cell-penetrating peptides (CPPs) expands peptide use in basic research and therapeutic applications. Although direct conjugation of a functional peptide with a CPP is the simplest method for delivery, this method has not always been reliable. CPPs usually contain several positively charged amino acids that potentially interact non-specifically with negatively charged molecules in cells and subsequently interfere with conjugated functional peptide function. Here we demonstrate a new intracellular delivery method for peptides in which a functional peptide is released from a positively charged CPP via peptide nucleic acids (PNAs). We prepared an 8-mer PNA conjugated to octa-arginine in tandem (PNA1-CPP) and linked its complementary PNA to an autophagy inducing peptide (PNA2-AIP) by solid-phase peptide synthesis. PNA1-CPP and PNA2-AIP formed a 1 : 1 hybrid via PNA1/PNA2 interaction, thereby indirectly but stably connecting the AIP to the CPP. PNA2-AIP was successfully delivered into cells in a hybrid formation-dependent manner and at least some portion of the PNA1-CPP/PNA2-AIP hybrids dissociated into PNA2-AIP and PNA1-CPP inside the cells. Notably, PNA2-AIP delivered to cells induced more autophagy than AIP directly conjugated to CPP (CPP-AIP). Further, the PNA hybrid did not induce significant cell death. These findings indicate that the PNA1/PNA2 hybrid can function as a molecular glue enabling the delivery of functional peptides into cells.


Assuntos
Proteína Beclina-1/farmacologia , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/metabolismo , Fragmentos de Peptídeos/farmacologia , Ácidos Nucleicos Peptídicos/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/toxicidade , Peptídeos Penetradores de Células/toxicidade , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Células HeLa , Humanos , Zíper de Leucina , Oligopeptídeos/metabolismo , Oligopeptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Ácidos Nucleicos Peptídicos/toxicidade , Ligação Proteica
12.
Regul Toxicol Pharmacol ; 117: 104732, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32795584

RESUMO

Skin sensitization evaluation is a key part of the safety assessment of ingredients in consumer products, which may have skin sensitizing potential. The dermal sensitization threshold (DST) concept, which is based on the concept of the thresholds of toxicological concern, has been proposed for the risk assessment of chemicals to which skin exposure is very low level. There is negligible risk of skin sensitization if a skin exposure level for the substance of interest was below the reactive DST which would protect against 95% of protein-reactive chemicals. For the remaining 5%, the substance with the defined knowledge of chemical structure (i.e., High Potency Category (HPC) rules) needs to be excluded from the application. However, the DST value for HPC chemicals has not yet been proposed. In this study, we calculated the 95th percentile probabilities estimate from distributions of skin sensitization potency data and derived a novel DST for HPC chemicals (HPC DST) of 1.5 µg/cm2. This value presents a useful default approach for unidentified substances in ingredients considering, as a worst-case scenario, that the unidentified compound may be a potent skin sensitizer. Finally, we developed a novel risk assessment workflow incorporating the HPC DST along with the previously published DSTs.


Assuntos
Alérgenos/toxicidade , Qualidade de Produtos para o Consumidor , Dermatite Alérgica de Contato/classificação , Testes Cutâneos/métodos , Pele/efeitos dos fármacos , Animais , Dermatite Alérgica de Contato/diagnóstico , Humanos , Pele/patologia
13.
Regul Toxicol Pharmacol ; 116: 104721, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32645429

RESUMO

All cosmetic products placed onto the market must undergo a risk assessment for human health to ensure they are safe for consumers, including an assessment of skin sensitisation risk. Historically, in vivo animal test methods were used to identify and characterise skin sensitisation hazard, however non-animal and other new approach methodologies (NAMs) are now the preferred and mandated choice for use in risk assessment for cosmetic ingredients. The experience gained over the last three decades on how to conduct risk assessments based upon NAMs has allowed us to develop a non-animal, next generation risk assessment (NGRA) framework for the assessment of skin sensitisers. The framework presented here is based upon the principles published by the International Cooperation on Cosmetic Regulation (ICCR) and is human relevant, exposure led, hypothesis driven and designed to prevent harm. It is structured in three tiers and integrates all relevant information using a weight of evidence (WoE) approach that can be iterated when new information becomes available. The initial tier (TIER 0) involves a thorough review of the existing information including; identification of the use scenario/consumer exposure; characterisation of the chemical purity and structure; in silico predictions; existing data pertaining to skin sensitisation hazard (historical or non-animal); the identification of suitable read-across candidates with supporting hazard identification/characterisation information and application of exposure-based waiving. Considering all information identified in TIER 0, the next step is the generation of a hypothesis (TIER 1). All data are considered in an exposure-led WoE approach, taking into account an initial view on whether a chemical is likely to be a skin sensitiser or not, choice of defined approach (DA) and availability of read-across candidates. If existing information is insufficient for concluding the risk assessment, the generation of additional information may be required to proceed (TIER 2). Such targeted testing could involve refinement of the exposure estimation or generation of data from in vitro or in chemico NAMs. Once sufficient information is available, the final stage of the NGRA framework is the determination of a point of departure (POD), characterising uncertainty and comparing to the consumer exposure in a WoE. Thorough evaluation of the sources of uncertainty is essential to ensure transparency and build trust in new risk assessment approaches. Although significant progress has been made, industry must continue to share its experience in skin sensitisation NGRA via case studies to demonstrate that this new risk assessment approach is protective for consumers. Dialogue and collaboration between key stakeholders, i.e. risk assessors, clinicians and regulators are important to gain mutual understanding and grow confidence in new approaches.


Assuntos
Alérgenos/toxicidade , Cosméticos/toxicidade , Haptenos/toxicidade , Medição de Risco/métodos , Pele/efeitos dos fármacos , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Humanos
14.
Bioorg Med Chem Lett ; 29(7): 878-881, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737088

RESUMO

We synthesized a pair of compounds containing leucine zipper peptides to deliver protein cargo into cells. One is a cell-penetrating peptide (CPP) with Lz(E), a leucine zipper peptide containing negatively charged amino acids, and the other is a Nanog protein with Lz(K), a leucine zipper peptide containing positively charged amino acids. When cells were treated with these equimolar mixtures, Nanog-Lz(K) hybridized with Lz(E)-CPP was successfully delivered into the cells. Furthermore, Nanog-Lz(K) exerted its proper function after nuclear transport.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Zíper de Leucina , Proteína Homeobox Nanog/metabolismo , Sequência de Aminoácidos , Núcleo Celular , Células HeLa , Humanos
15.
Gastroenterology ; 152(3): 631-643, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825961

RESUMO

BACKGROUND & AIMS: Little is known about the mechanisms by which chronic inflammation contributes to carcinogenesis, such as the development of colon tumors in patients with inflammatory bowel diseases. Specific microRNA (miRNAs) can function as suppressors or oncogenes, and widespread alterations in miRNA expression have been associated with tumorigenesis. We studied whether alterations in miRNA function contribute to inflammation-associated colon carcinogenesis. METHODS: We studied the effects of inflammatory cytokines, such as tumor necrosis factor, interleukin-1α (IL1A), and IL1ß (IL1B), on miRNA function, measured by activity of reporter constructs containing miRNA-binding sites in their 3' untranslated regions, in human 293T embryonic kidney, Caco-2, HT29, and HCT116 colon carcinoma cells, as well as dicer+/+ and dicer-/-, and Apobec3+/+ and Apobec3-/- mouse embryonic fibroblasts. Cells were analyzed by immunoblots, immunohistochemistry, and flow cytometry. We generated transgenic mice expressing reporter constructs regulated by LET7B, MIR122, and MIR29b response elements; some mice were given injections of miRNA inhibitors (anti-MIR122 or anti-LET7B), a negative control, or tumor necrosis factor. Liver tissues were collected and analyzed by immunoblotting. Reporter mice were given azoxymethane followed by dextran sulfate sodium to induce colitis and colon tumors; some mice were given the ROCK inhibitor fasudil along with these agents (ROCK inhibitors increase miRNA function). Colon tissues were collected and analyzed by immunohistochemistry, immunoblots, and fluorescence microscopy. RESULTS: Incubation of cell lines with inflammatory cytokines reduced the ability of miRNAs to down-regulate expression from reporter constructs; dicer was required for this effect, so these cytokines relieve miRNA-dependent reductions in expression. The cytokines promoted degradation of APOBEC3G, which normally promotes miRNA loading into argonaute 2-related complexes. Mice with colitis had reduced miRNA function, based on increased expression of reporter genes. Administration of fasudil to mice did not reduce the severity of colitis that developed but greatly reduced the numbers of colon tumors formed (mean 2 tumors/colon in mice given fasudil vs 9 tumors/colon in mice given control agent). We made similar observations in IL10-deficient mice. CONCLUSIONS: We found inflammatory cytokines to reduce the activities of miRNAs. In mice with colitis, activities of miRNAs are reduced; administration of an agent that increases miRNA function prevents colon tumor formation in these mice. This pathway might be targeted to prevent colon carcinogenesis in patients with inflammatory bowel diseases.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinoma/genética , Colite/metabolismo , Colo/efeitos dos fármacos , Neoplasias do Colo/genética , Citocinas/farmacologia , Fibroblastos/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , Animais , Azoximetano/toxicidade , Células CACO-2 , Carcinogênese/genética , Carcinoma/induzido quimicamente , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Citidina Desaminase/genética , RNA Helicases DEAD-box/genética , Sulfato de Dextrana/toxicidade , Fibroblastos/metabolismo , Citometria de Fluxo , Células HCT116 , Células HT29 , Humanos , Immunoblotting , Imuno-Histoquímica , Inflamação , Interleucina-1alfa/farmacologia , Interleucina-1beta/farmacologia , Camundongos , MicroRNAs/genética , Ribonuclease III/genética , Fator de Necrose Tumoral alfa/farmacologia
16.
J Virol ; 91(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424283

RESUMO

Glycosylation of Env defines pathogenic properties of simian immunodeficiency virus (SIV). We previously demonstrated that pathogenic SIVmac239 and a live-attenuated, quintuple deglycosylated Env mutant (Δ5G) virus target CD4+ T cells residing in different tissues during acute infection. SIVmac239 and Δ5G preferentially infected distinct CD4+ T cells in secondary lymphoid organs (SLOs) and within the lamina propria of the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323-9336, 2012, https://doi.org/10.1128/JVI.00948-12). Here, we studied the host responses relevant to SIV targeting of CXCR3+ CCR5+ CD4+ T cells in SLOs. Genome-wide transcriptome analyses revealed that Th1-polarized inflammatory responses, defined by expression of CXCR3 chemokines, were distinctly induced in the SIVmac239-infected animals. Consistent with robust expression of CXCL10, CXCR3+ T cells were depleted from blood in the SIVmac239-infected animals. We also discovered that elevation of CXCL10 expression in blood and SLOs was secondary to the induction of CD14+ CD16+ monocytes and MAC387+ macrophages, respectively. Since the significantly higher levels of SIV infection in SLOs occurred with a massive accumulation of infiltrated MAC387+ macrophages, T cells, dendritic cells (DCs), and residential macrophages near high endothelial venules, the results highlight critical roles of innate/inflammatory responses in SIVmac239 infection. Restricted infection in SLOs by Δ5G also suggests that glycosylation of Env modulates innate/inflammatory responses elicited by cells of monocyte/macrophage/DC lineages.IMPORTANCE We previously demonstrated that a pathogenic SIVmac239 virus and a live-attenuated, deglycosylated mutant Δ5G virus infected distinct CD4+ T cell subsets in SLOs and the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323-9336, 2012, https://doi.org/10.1128/JVI.00948-12). Accordingly, infections with SIVmac239, but not with Δ5G, deplete CXCR3+ CCR5+ CD4+ T (Th1) cells during the primary infection, thereby compromising the cellular immune response. Thus, we hypothesized that distinct host responses are elicited by the infections with two different viruses. We found that SIVmac239 induced distinctly higher levels of inflammatory Th1 responses than Δ5G. In particular, SIVmac239 infection elicited robust expression of CXCL10, a chemokine for CXCR3+ cells, in CD14+ CD16+ monocytes and MAC387+ macrophages recently infiltrated in SLOs. In contrast, Δ5G infection elicited only modest inflammatory responses. These results suggest that the glycosylation of Env modulates the inflammatory/Th1 responses through the monocyte/macrophage subsets and elicits marked differences in SIV infection and clinical outcomes.


Assuntos
Linfócitos T CD4-Positivos/virologia , Quimiocina CXCL10/biossíntese , Macrófagos/imunologia , Monócitos/imunologia , Receptores CXCR3/análise , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Subpopulações de Linfócitos T/virologia , Animais , Linfócitos T CD4-Positivos/química , Expressão Gênica , Perfilação da Expressão Gênica , Imunidade Inata , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Subpopulações de Linfócitos T/química
17.
Crit Rev Toxicol ; 48(5): 359-374, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474122

RESUMO

Skin sensitization is a toxicity endpoint of widespread concern, for which the mechanistic understanding and concurrent necessity for non-animal testing approaches have evolved to a critical juncture, with many available options for predicting sensitization without using animals. Cosmetics Europe and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods collaborated to analyze the performance of multiple non-animal data integration approaches for the skin sensitization safety assessment of cosmetics ingredients. The Cosmetics Europe Skin Tolerance Task Force (STTF) collected and generated data on 128 substances in multiple in vitro and in chemico skin sensitization assays selected based on a systematic assessment by the STTF. These assays, together with certain in silico predictions, are key components of various non-animal testing strategies that have been submitted to the Organization for Economic Cooperation and Development as case studies for skin sensitization. Curated murine local lymph node assay (LLNA) and human skin sensitization data were used to evaluate the performance of six defined approaches, comprising eight non-animal testing strategies, for both hazard and potency characterization. Defined approaches examined included consensus methods, artificial neural networks, support vector machine models, Bayesian networks, and decision trees, most of which were reproduced using open source software tools. Multiple non-animal testing strategies incorporating in vitro, in chemico, and in silico inputs demonstrated equivalent or superior performance to the LLNA when compared to both animal and human data for skin sensitization.


Assuntos
Alternativas aos Testes com Animais/métodos , Biologia Computacional/métodos , Simulação por Computador , Cosméticos/efeitos adversos , Dermatite Alérgica de Contato/imunologia , Pele/imunologia , Animais , Cosméticos/farmacologia , Dermatite Alérgica de Contato/etiologia , Humanos , Camundongos , Pele/efeitos dos fármacos
18.
Crit Rev Toxicol ; 48(5): 344-358, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474128

RESUMO

Cosmetics Europe, the European Trade Association for the cosmetics and personal care industry, is conducting a multi-phase program to develop regulatory accepted, animal-free testing strategies enabling the cosmetics industry to conduct safety assessments. Based on a systematic evaluation of test methods for skin sensitization, five non-animal test methods (DPRA (Direct Peptide Reactivity Assay), KeratinoSensTM, h-CLAT (human cell line activation test), U-SENSTM, SENS-IS) were selected for inclusion in a comprehensive database of 128 substances. Existing data were compiled and completed with newly generated data, the latter amounting to one-third of all data. The database was complemented with human and local lymph node assay (LLNA) reference data, physicochemical properties and use categories, and thoroughly curated. Focused on the availability of human data, the substance selection resulted nevertheless resulted in a high diversity of chemistries in terms of physico-chemical property ranges and use categories. Predictivities of skin sensitization potential and potency, where applicable, were calculated for the LLNA as compared to human data and for the individual test methods compared to both human and LLNA reference data. In addition, various aspects of applicability of the test methods were analyzed. Due to its high level of curation, comprehensiveness, and completeness, we propose our database as a point of reference for the evaluation and development of testing strategies, as done for example in the associated work of Kleinstreuer et al. We encourage the community to use it to meet the challenge of conducting skin sensitization safety assessment without generating new animal data.


Assuntos
Cosméticos/efeitos adversos , Bases de Dados Factuais , Dermatite Alérgica de Contato/imunologia , Pele/imunologia , Alternativas aos Testes com Animais/métodos , Cosméticos/farmacologia , Dermatite Alérgica de Contato/etiologia , Humanos , Pele/efeitos dos fármacos
19.
J Appl Toxicol ; 38(9): 1233-1243, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29722446

RESUMO

The epidermal sensitization assay (EpiSensA) is an in vitro skin sensitization test method based on gene expression of four markers related to the induction of skin sensitization; the assay uses commercially available reconstructed human epidermis. EpiSensA has exhibited an accuracy of 90% for 72 chemicals, including lipophilic chemicals and pre-/pro-haptens, when compared with the results of the murine local lymph node assay. In this work, a ring study was performed by one lead and two naive laboratories to evaluate the transferability, as well as within- and between-laboratory reproducibilities, of EpiSensA. Three non-coded chemicals (two lipophilic sensitizers and one non-sensitizer) were tested for the assessment of transferability and 10 coded chemicals (seven sensitizers and three non-sensitizers, including four lipophilic chemicals) were tested for the assessment of reproducibility. In the transferability phase, the non-coded chemicals (two sensitizers and one non-sensitizer) were correctly classified at the two naive laboratories, indicating that the EpiSensA protocol was transferred successfully. For the within-laboratory reproducibility, the data generated with three coded chemicals tested in three independent experiments in each laboratory gave consistent predictions within laboratories. For the between-laboratory reproducibility, 9 of the 10 coded chemicals tested once in each laboratory provided consistent predictions among the three laboratories. These results suggested that EpiSensA has good transferability, as well as within- and between-laboratory reproducibility.


Assuntos
Dermatite Alérgica de Contato/etiologia , Epiderme/efeitos dos fármacos , Irritantes/toxicidade , Queratinócitos/efeitos dos fármacos , Ensaio de Proficiência Laboratorial , Testes de Irritação da Pele/métodos , Fator 3 Ativador da Transcrição/genética , Células Cultivadas , Dermatite Alérgica de Contato/genética , Epiderme/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Glutamato-Cisteína Ligase/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Interleucina-8/genética , Queratinócitos/metabolismo , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Medição de Risco
20.
Regul Toxicol Pharmacol ; 88: 118-124, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28602621

RESUMO

Skin sensitization is one of the key safety endpoints for chemicals applied directly to the skin. Several integrated testing strategies (ITS) using multiple non-animal test methods have been developed to accurately evaluate the sensitizing potential of chemicals, but there is no regulatory-accepted ITS to classify a chemical as a non-sensitizer. In this study, the predictive performance of a binary test battery with KeratinoSens™ and h-CLAT compared to the local lymph node assay (LLNA) and human data was examined using comprehensive dataset of 203 chemicals. When two negative results indicate a non-sensitizer, the binary test battery provided sensitivity of 93.4% or 94.4% compared with the LLNA or human data. Taking into account the predictive limitations (i.e. high log Kow, pre-/pro-haptens and acyl transfer agents (or amine-reactive)), the binary test battery had extremely high sensitivity comparable to that of the 3 out of 3 ITS where three negative results of the DPRA, KeratinoSens™ and h-CLAT indicate a non-sensitizer. Therefore, the data from KeratinoSens™ or h-CLAT may provide partly redundant information on the molecular initiating event derived from DPRA. Taken together, the binary test battery of KeratinoSens™ and h-CLAT could be used as part of a bottom-up approach for skin sensitization hazard prediction.


Assuntos
Alérgenos/efeitos adversos , Dermatite Alérgica de Contato/diagnóstico , Ensaio Local de Linfonodo , Alternativas aos Testes com Animais , Animais , Linhagem Celular , Humanos , Sensibilidade e Especificidade , Pele/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA