Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951034

RESUMO

Pigs are sometimes utilized in preclinical drug metabolism studies, with growing interest, and so their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All CYP4A genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in Escherichia coli, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity, i.e., at the ω-position of fatty acids. These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. Significance Statement Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the ω-hydroxylation of fatty acids.

2.
Drug Metab Dispos ; 50(11): 1434-1441, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35701183

RESUMO

Cytochrome P450s (P450s) have been identified and analyzed in dogs and pigs, species that are often used in preclinical drug studies. Moreover, P450s are clinically important for drug therapy not only in humans, but also in species under veterinary care, including dogs and cats. In the present study, seven P450s homologous to human CYP2J2, namely, dog CYP2J2; cat CYP2J2; and pig CYP2J33, CYP2J35, CYP2J91, and CYP2J93, were newly identified and characterized, along with pig CYP2J34 previously identified. The cDNAs of these CYP2Js contain open reading frames of 502 amino acids, except for CYP2J35 (498 amino acids), and share high sequence identity (77%-80%) with human CYP2J2. Phylogenetic analysis revealed that dog and cat CYP2J2 were closely related, whereas pig CYP2Js formed a cluster. All seven CYP2J genes contain nine coding exons and are located in corresponding genomic regions, with the pig CYP2J genes forming a gene cluster. These CYP2J2 mRNAs were predominantly expressed in the small intestine with additional expression in the kidney and brain for dog CYP2J2 and pig CYP2J91 mRNAs, respectively. All seven CYP2Js metabolized human CYP2J2 substrates terfenadine, ebastine, and astemizole, indicating that they are functional enzymes. Dog CYP2J2 and pig CYP2J34 and CYP2J35 efficiently catalyzed ebastine primary hydroxylation and secondary carebastine formation at low substrate concentrations, just as human CYP2J2 does. Velocity-versus-substate plots exhibited sigmoidal relationships for dog CYP2J2, cat CYP2J2, and pig CYP2J33, indicating allosteric interactions. These results suggest that dog, cat, and pig CYP2Js have similar functional characteristics to human CYP2J2, with slight differences in ebastine and astemizole oxidations. SIGNIFICANCE STATEMENT: Dog CYP2J2; cat CYP2J2; and pig CYP2J33, CYP2J34, CYP2J35, CYP2J91, and CYP2J93, homologous to human CYP2J2, were identified and characterized by sequence, phylogenetic, and genomic structure analyses. Intestinal expression patterns of CYP2J mRNAs were characteristic in dogs, cats, and pigs. Dog, cat, and pig CYP2Js likely play roles as drug-metabolizing enzymes in the small intestine, similar to human CYP2J2.


Assuntos
Gatos , Sistema Enzimático do Citocromo P-450 , Cães , Suínos , Animais , Astemizol , Butirofenonas , Gatos/genética , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Cães/genética , Humanos , Filogenia , Piperidinas , Suínos/genética , Terfenadina
3.
Pestic Biochem Physiol ; 175: 104847, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993965

RESUMO

Fipronil is a phenylpyrazole insecticide that is widely used as a pesticide and a veterinary drug, although studies suggest that it could be toxic to mammals. The objectives of this study were to examine the pharmacokinetic profile of fipronil in mice, dogs, and cats, and to evaluate its effects on emotional and cognitive behaviors of dogs and cats using the data obtained from mice. The assessment of in vivo kinetics of fipronil was conducted in mice and dogs. We also performed behavioral tests (elevated plus-maze and Y-maze) and measured the levels of neurotransmitters in mice exposed to fipronil. In addition, the in vitro metabolism of fipronil were evaluated using liver microsomes of rats, mice, dogs, and cats. The results revealed that fipronil is distributed throughout the body (blood, brain, adipose tissue, and liver) of mice after dermal application. It was metabolized to fipronil sulfone primarily in the liver. The data on kinetics show that both fipronil and fipronil sulfone have a longer half-life in dogs and cats than in mice. The behavioral tests indicated that fipronil and fipronil sulfone could affect emotional and cognitive behaviors and alter the levels of neurotransmitters (dopamine in the striatum and serotonin in the hippocampus) in mice. Furthermore, we found that dogs and cats have a low ability to metabolize fipronil than mice and rats. However, further comprehensive studies are needed to determine whether fipronil affects the emotional and cognitive behaviors when administered to dogs and cats. To the best of our knowledge, this is the first study to examine the pharmacokinetic data and verify the effects of fipronil on emotional and cognitive behaviors of dogs and cats using the data obtained from mice.


Assuntos
Doenças do Gato , Doenças do Cão , Inseticidas , Animais , Gatos , Cognição , Cães , Inseticidas/toxicidade , Mamíferos , Camundongos , Pirazóis , Ratos
4.
Toxicol Appl Pharmacol ; 377: 114620, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31195005

RESUMO

Canis lupus familiaris (domestic dog) possess a high capacity to metabolize higher-chlorinated polychlorinated biphenyls (PCBs) to thyroid hormone (TH)-like hydroxylated PCB metabolites (OH-PCBs). As a result, the brain could be at high risk of toxicity caused by OH-PCBs. To evaluate the effect of OH-PCBs on dog brain, we analyzed OH-PCB levels in the brain and the metabolome of the frontal cortex following exposure to a mixture of PCBs (CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187, and 202). 4-OH-CB202 and 4-OH-CB107 were major OH-PCBs in the brain of PCB-exposed dogs. These OH-PCBs were associated with metabolites involved in urea cycle, proline-related compounds, and purine, pyrimidine, glutathione, and amino-acid metabolism in dog brain. Moreover, adenosine triphosphate levels in the PCBs exposure group were significantly lower than in the control group. These results suggest that OH-PCB exposure is associated with a disruption in TH homeostasis, generation of reactive oxygen species, and/or disruption of oxidative phosphorylation (OXPHOS) in brain cells. Among them, OXPHOS disturbance could be associated with both disruptions in cellular amino-acid metabolism and urea cycle. Therefore, an OXPHOS activity assay was performed to evaluate the disruption of OXPHOS by OH-PCBs. The results indicated that 4-OH-CB107 inhibits the function of Complexes III, IV, and V of the electron transport chain, suggesting that 4-OH-CB107 inhibit these complexes in OXPHOS. The neurotoxic effects of PCB exposure may be mediated through mitochondrial toxicity of OH-PCBs in the brain.


Assuntos
Química Encefálica/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Metaboloma , Fosforilação Oxidativa/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Cães , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Hidroxilação , Masculino , Neurotoxinas/toxicidade , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Espécies Reativas de Oxigênio , Hormônios Tireóideos/metabolismo , Ureia/metabolismo
5.
Ecotoxicol Environ Saf ; 151: 98-108, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29329099

RESUMO

The use of free range animals for monitoring environmental health offers opportunities to detect exposure and assess the toxicological effects of pollutants in terrestrial ecosystems. Potential human health risk of dietary intake of metals and metalloid via consumption of offal and muscle of free range chicken, cattle and goats by the urban population in Benin City was evaluated. Muscle, gizzard, liver and kidney samples were analyzed for Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb concentrations using inductively coupled plasma mass spectrometer (ICP-MS) while Hg was determined using Hg analyzer. Mean concentrations of metals (mg/kg ww) varied significantly depending upon the tissues and animal species. Human health risk estimations for children and adults showed estimated daily intake (EDI) values of tissues below oral reference dose (RfD) threshold for non essential metals Cd, As, Pb and Hg thus strongly indicating no possible health risk via consumption of animal based food. Calculated Hazard quotient (THQ) was less than 1 (< 1) for all the metals analyzed for both adult and children. However, Cd and As had the highest value of THQ suggestive of possible health risk associated with continuous consumption of Cd and As contaminated animal based foods. Hazard Index (HI) for additive effect of metals was higher in chicken liver and gizzard for children and chicken liver for adults. Thus, HI indicated that chicken liver and gizzard may contribute significantly to adult and children dietary exposure to heavy metals. Principal component analysis (PCA) showed a clear species difference in metal accumulation between chickens and the ruminants. This study provides baseline data for future studies and also valuable evidence of anthropogenic impacts necessary to initiate national and international policies for control of heavy metal and metalloid content in food items.


Assuntos
Poluentes Ambientais/análise , Contaminação de Alimentos , Metaloides/análise , Metais Pesados/análise , Adulto , Animais , Bovinos , Galinhas , Criança , Cidades , Monitoramento Ambiental , Cabras , Humanos , Carne/análise , Músculos/química , Nigéria , Medição de Risco
6.
Pestic Biochem Physiol ; 148: 42-49, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891376

RESUMO

Anti-blood coagulation rodenticides, such as warfarin, have been used all over the world. They inhibit vitamin K epoxide reductase (VKOR), which is necessary for producing several blood clotting factors. This inhibition by rodenticides results in lethal hemorrhage in rodents. However, heavy usage of these agents has led to the appearance of rodenticide-resistant rats. There are two major mechanisms underlying this resistance, i.e., mutation of the target enzyme of warfarin, VKOR, and enhanced metabolism of warfarin. However, there have been few studies regarding the hepatic metabolism of warfarin, which should be related to resistance. To investigate warfarin metabolism in resistant rats, in situ liver perfusion of warfarin was performed with resistant black rats (Rattus rattus) from Tokyo, Japan. Liver perfusion is an in situ methodology that can reveal hepatic function specifically with natural composition of the liver. The results indicated enhanced hepatic warfarin hydroxylation activity compared with sensitive black rats. On the other hand, in an in vitro microsomal warfarin metabolism assay to investigate kinetic parameters of cytochrome P450, which plays a major role in warfarin hydroxylation, the Vmax of resistant rats was slightly but significantly higher compared to the results obtained in the in situ study. These results indicated that another factor like electron donators may also contribute to the enhanced metabolism in addition to high expression of cytochrome P450.


Assuntos
Anticoagulantes/toxicidade , Resistência a Medicamentos/genética , Fígado/efeitos dos fármacos , Rodenticidas/toxicidade , Varfarina/toxicidade , Animais , Anticoagulantes/farmacocinética , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Fígado/irrigação sanguínea , Fígado/metabolismo , Masculino , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Mutação , Ratos , Rodenticidas/farmacocinética , Espectrometria de Massas por Ionização por Electrospray , Vitamina K Epóxido Redutases/metabolismo , Varfarina/farmacocinética
7.
Environ Sci Technol ; 51(19): 11354-11362, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28854783

RESUMO

Present study determined concentrations and residue patterns of bromophenols (BPhs) in whole blood samples of pet cats and pet dogs collected from veterinary hospitals in Japan. BPhs concentrations were higher in cat blood than in dog blood, with statistically insignificant differences (p = 0.07). Among the congeners, 2,4,6-tribromophenol (TBPh) constituted the majority of BPhs (>90%) detected in both species. Analysis of commercial pet food to estimate exposure routes showed that the most abundant congener in all pet food samples was 2,4,6-TBPh, accounting for >99% of total BPhs. This profile is quite similar to the blood samples of the pets, suggesting that diet might be an important exposure route for BPhs in pets. After incubation in polybrominated diphenyl ether (PBDE) mixtures (BDE-47, BDE-99 and BDE-209), 2,4,5-TBPh was found in dog liver microsomes but not in cat liver microsomes, implying species-specific metabolic capacities for PBDEs. Formation of 2,4,5-TBPh occurred by hydroxylation at the 1' carbon atom of the ether bond of BDE-99 is similar to human study reported previously. Hydroxylated PBDEs were not detected in cats or dogs; therefore, diphenyl ether bond cleavage of PBDEs can also be an important metabolic pathway for BPhs formation in cats and dogs.


Assuntos
Ração Animal , Poluentes Ambientais/análise , Bifenil Polibromatos/análise , Animais , Gatos , Cães , Poluentes Ambientais/sangue , Éteres Difenil Halogenados , Humanos , Japão , Microssomos Hepáticos/química , Bifenil Polibromatos/sangue
8.
Environ Sci Technol ; 51(10): 5811-5819, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28440655

RESUMO

The adverse effects of elevated polybrominated diphenyl ether (PBDE) levels, reported in the blood of domestic dogs and cats, are considered to be of great concern. However, the tissue distribution of PBDEs and their derivatives in these animals is poorly understood. This study determined the concentrations and profiles of PBDEs, hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and 2,4,6-tribromophenol (2,4,6-tri-BPh) in the blood, livers, bile, and brains of dogs and cats in Japan. Higher tissue concentrations of PBDEs were found in cats, with the dominant congener being BDE209. BDE207 was also predominant in cat tissues, indicating that BDE207 was formed via BDE209 debromination. BDE47 was the dominant congener in dog bile, implying a species-specific excretory capacity of the liver. OH-PBDE and MeO-PBDE concentrations were several orders of magnitude higher in cat tissues, with the dominant congener being 6OH-BDE47, possibly owing to their intake of naturally occurring MeO-PBDEs in food, MeO-PBDE demethylation in the liver, and lack of UDP-glucuronosyltransferase, UGT1A6. Relatively high concentrations of BDE209, BDE207, 6OH-BDE47, 2'MeO-BDE68, and 2,4,6-tri-BPh were found in cat brains, suggesting a passage through the blood-brain barrier. Thus, cats in Japan might be at a high risk from PBDEs and their derivatives, particularly BDE209 and 6OH-BDE47.


Assuntos
Poluentes Ambientais/farmacocinética , Éteres Difenil Halogenados/farmacocinética , Animais , Gatos , Cães , Monitoramento Ambiental , Glucuronosiltransferase , Japão , Distribuição Tecidual
9.
Bull Environ Contam Toxicol ; 98(2): 172-177, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28035427

RESUMO

Concentrations of ten trace elements (Hg, As, Cd, Pb, Co, Cr, Cu, Ni, Se and Zn) were determined in different tissues (liver, kidney, muscle, heart and brain) of African sacred ibis (Threskiornis aethiopicus), Hamerkop (Scopus umbretta), marabou stork (Leptoptilos crumeniferus) and great white pelican (Pelecanus onocrotalus) inhabiting the Ethiopian Rift Valley region. There were differences in trace element patterns among the bird species. Significantly (p < 0.05) higher concentrations of Cd (5.53 µg/g dw ± 2.94) in kidney and Hg (0.75 µg/g ww ± 0.30) in liver were observed in the great white pelican compared to the other species, and liver concentrations of these two elements showed positive correlations with trophic level. Concentrations of toxic elements (As, Cd, Pb and Hg) in liver were below their respective toxicological thresholds, indicating that the data may provide baseline information for future studies.


Assuntos
Aves/metabolismo , Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Oligoelementos/metabolismo , Animais , Poluentes Ambientais/análise , Etiópia , Rim/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Oligoelementos/análise
10.
Environ Sci Technol ; 50(1): 444-52, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26630569

RESUMO

There are growing concerns about the increase in hyperthyroidism in pet cats due to exposure to organohalogen contaminants and their hydroxylated metabolites. This study investigated the blood contaminants polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated derivatives (OH-PCBs, OH-PBDEs, and MeO-PBDEs), in pet dogs and cats. We also measured the residue levels of these compounds in commercially available pet foods. Chemical analyses of PCBs and OH-PCBs showed that the OH-PCB levels were 1 to 2 orders of magnitude lower in cat and dog food products than in their blood, suggesting that the origin of OH-PCBs in pet dogs and cats is PCBs ingested with their food. The major congeners of OH-/MeO-PBDEs identified in both pet food products and blood were natural products (6OH-/MeO-BDE47 and 2'OH-/MeO-BDE68) from marine organisms. In particular, higher concentrations of 6OH-BDE47 than 2'OH-BDE68 and two MeO-PBDE congeners were observed in the cat blood, although MeO-BDEs were dominant in cat foods, suggesting the efficient biotransformation of 6OH-BDE47 from 6MeO-BDE47 in cats. We performed in vitro demethylation experiments to confirm the biotransformation of MeO-PBDEs to OH-PBDEs using liver microsomes. The results showed that 6MeO-BDE47 and 2'MeO-BDE68 were demethylated to 6OH-BDE47 and 2'OH-BDE68 in both animals, whereas no hydroxylated metabolite from BDE47 was detected. The present study suggests that pet cats are exposed to MeO-PBDEs through cat food products containing fish flavors and that the OH-PBDEs in cat blood are derived from the CYP-dependent demethylation of naturally occurring MeO-PBDE congeners, not from the hydroxylation of PBDEs.


Assuntos
Ração Animal , Éteres Difenil Halogenados , Bifenilos Policlorados , Animais , Biotransformação , Gatos , Cães , Éteres Difenil Halogenados/sangue , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/metabolismo , Hidroxilação , Bifenilos Policlorados/sangue , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo
11.
Pestic Biochem Physiol ; 134: 1-7, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27914534

RESUMO

Roof rats (Rattus rattus) live mainly in human habitats. Heavy use of rodenticides, such as warfarin, has led to the development of drug resistance, making pest control difficult. There have been many reports regarding mutations of vitamin K epoxide reductase (VKOR), the target enzyme of warfarin, in resistant rats. However, it has been suggested there are other mechanisms of warfarin resistance. To confirm these possibilities, closed colonies of warfarin-susceptible roof rats (S) and resistant rats from Tokyo (R) were established, and the pharmacokinetics/pharmacodynamics of warfarin in rats from both colonies was investigated. R rats had low levels of warfarin in serum and high clearance activity. These rats can rapidly metabolize warfarin by hydroxylation. The levels of accumulation in the organs were lower than those of S rats. R rats administered warfarin showed high expression levels of CYP2B, 2C, and 3A, which play roles in warfarin hydroxylation, and may explain the high clearance ability of R rats. The mechanism of warfarin resistance in roof rats from Tokyo involved not only mutation of VKOR but also high clearance ability due to high levels of CYP2B, 2C and 3A expression possibly induced by warfarin.


Assuntos
Resistência a Medicamentos/fisiologia , Rodenticidas/farmacologia , Rodenticidas/farmacocinética , Varfarina/farmacologia , Varfarina/farmacocinética , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Medicamentos/genética , Fezes/química , Hidroxilação , Rim/metabolismo , Fígado/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Mutação , Tempo de Protrombina , Ratos , Rodenticidas/sangue , Rodenticidas/urina , Vitamina K Epóxido Redutases/genética , Varfarina/sangue , Varfarina/urina
12.
Environ Sci Technol ; 49(24): 14588-96, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26579933

RESUMO

The aim of this study was to understand the cytochrome P450 (CYP)-dependent metabolic pathway and potency of polychlorinated biphenyls (PCBs) in the Baikal seal (Pusa sibirica). In vitro metabolism of 62 PCB congener mixtures was investigated by using liver microsomes of this species. A decreased ratio of over 20% was observed for CB3, CB4, CB8, CB15, CB19, CB22, CB37, CB54, CB77, and CB105, suggesting the preferential metabolism of low-chlorinated PCBs by CYPs. The highly activated metabolic pathways in Baikal seals that were predicted from the decreased PCBs and detected hydroxylated PCBs (OH-PCBs) were CB22 to 4'OH-CB20 and CB77 to 4'OH-CB79. The total amount of OH-PCBs detected as identified and unidentified congeners accounted for only a 3.8 ± 1.7 mol % of loaded PCBs, indicating many unknown PCB metabolic pathways. To explore factors involved in CYP-dependent PCB metabolism, we examined the relationships among the structural and physicochemical properties of PCBs, the in silico PCB-CYP docking parameters, and the in vitro PCB decreased ratios by principal component analysis. Statistical analysis showed that the decreased PCB ratio was at least partly accounted for by the substituted chlorine number of PCBs and the distance from the Cl-unsubstituted carbon of docked PCBs to the heme Fe in CYP2A and 2B.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Bifenilos Policlorados/farmacocinética , Focas Verdadeiras/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Simulação por Computador , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/deficiência , Hidroxilação , Inativação Metabólica , Fígado/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Bifenilos Policlorados/metabolismo , Análise de Componente Principal , Esteroide Hidroxilases/química , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/farmacocinética
13.
Environ Res ; 138: 255-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25743931

RESUMO

The concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and their hydroxylated metabolites (OH-PCBs and OH-PBDEs) were measured in the blood of Eurasian wild pigs (Sus scrofa) from a municipal waste open dumping site (DS) and a reference site (RS) in South India. We showed that contamination with OH-PCBs was higher in female pigs from the DS than in all other adult pigs. The highest OH-PCB concentrations were found in piglets from the DS. Moreover, the hepatic expression levels of CYP1A and CYP2B were higher in piglets than in their dam, implying metabolism of PCBs by cytochrome P450 (CYP) enzymes. The OH-PCB congener profiles differed according to sex and collection sites, possibly because of variations in the expression levels of phase I and phase II enzymes among individual pigs, differences in the exposure sources, and maternal transfer of parent PCBs. The hepatic CYP1A expression levels were positively correlated with the blood concentrations of 4OH-CB107, 4OH-CB162, and 4OH-CB187, implying CYP1A-dependent formation of these OH-PCBs in the pig liver. We found no significant correlations between the blood concentrations of OH-PCBs and thyroid hormones (THs); however, the thyroxin (T4) levels were lower in pigs from the DS than in pigs from the RS. Our limited dataset suggest that induced CYP enzymes accelerate the metabolism of xenobiotics and endogenous molecules in pigs. Thus, besides parental compounds, the risk of hydroxylated metabolites entering wildlife and humans living in and around municipal open waste dumping sites should be considered.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Exposição Ambiental , Poluentes Ambientais/sangue , Éteres Difenil Halogenados/sangue , Bifenilos Policlorados/sangue , Sus scrofa/metabolismo , Animais , Monitoramento Ambiental , Feminino , Hidroxilação , Imunoglobulinas/sangue , Índia , Fígado/metabolismo , Masculino , Caracteres Sexuais , Hormônios Tireóideos/sangue , Vitamina A/sangue , Instalações de Eliminação de Resíduos
14.
Ecotoxicol Environ Saf ; 111: 160-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450929

RESUMO

Heavy metal and metalloid contamination in food resulting from mining is of major concern due to the potential risk involved. Food consumption is the most likely route of human exposure to metals. This study was therefore to assess metals in different organs and different animal species near gold mines used for human consumption (free-range chicken, goat and sheep) in Tarkwa, Ghana, and to estimate the daily intake and health risk. The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb were measured with an inductively coupled plasma-mass spectrometer and Hg analysis was done using the mercury analyzer. Principal component analysis of the results showed a clear separation between chicken, grouped on one side, and the ruminants clustered on another side in both offal and muscle. Interestingly, As, Cd, Hg, Mn and Pb made one cluster in the offal of chicken. Chicken muscle also showed similar distribution with As, Hg and Pb clustered together. The daily intake of metals (µg/kg body weight/day) were in the following ranges; As [0.002 (kidneys of goat and sheep)-0.19 (chicken gizzard)], Cd [0.003 (chicken muscle)-0.55 (chicken liver)], Hg [0.002 (goat muscle)-0.29 (chicken liver)], Pb [0.01 (muscles and kidneys of goat and sheep)-0.96 (chicken gizzard)] and Mn [0.13 (goat kidney)-8.92 (sheep liver)]. From the results, daily intakes of As, Cd, Hg, Pb and Mn in these food animals were low compared to the provisional tolerable daily intake guidelines. The THQs although less than one, indicated that contributions of chicken gizzard and liver to toxic metal exposure in adults and especially children could be significant.


Assuntos
Contaminação de Alimentos/análise , Análise de Perigos e Pontos Críticos de Controle , Carne/análise , Metaloides/toxicidade , Metais/toxicidade , Mineração , Adulto , Animais , Galinhas , Criança , Gana , Cabras , Ouro , Análise de Perigos e Pontos Críticos de Controle/métodos , Saúde , Intoxicação por Metais Pesados , Humanos , Mercúrio/análise , Mercúrio/toxicidade , Metaloides/análise , Metais/análise , Nível de Efeito Adverso não Observado , Intoxicação/etiologia , Risco , Medição de Risco , Ovinos
15.
Jpn J Vet Res ; 63(4): 173-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26753243

RESUMO

Cooking of meat usually aims in producing microbiologically safe food suitable for human consumption. However, doing so at such high temperatures may produce some cooking toxicants or mutagens. The objectives of this study were to investigate the mutagenicity of modelled-heat-treated meat after different cooking methods (boiling, pan-frying and charcoal grilling) using Ames Salmonella typhimurium mutagenicity assay. In addition, the content of benzo[a]pyrene (B[a]P) in the meat extracts prepared under different cooking methods were measured using HPLC. In a trial to investigate the causes behind the mutagenicity of different meat extracts, HepG2 cell line was exposed to different modelled-heat-treated meat extracts. mRNA expression levels of various phase I and II xenobiotic metabolizing enzymes (XMEs) were examined using real time PCR. The results obtained declared that pan-fried and charcoal grilled-meat extracts significantly induced production of histidine+ revertants in the Ames mutagenicity assay. Grilled-meat extracts had the highest residual concentrations of B[a]P followed by pan-fried-meat, boiled meat and raw meat extracts, respectively. Induction of XMEs especially CYP1A1, CYP1A2 and NQO1 may contribute to the mutagenic ability of these extracts. It is highly advisable to control cooking temperature, time and method in order to reduce cooked-meat mutagens.


Assuntos
Culinária , Temperatura Alta , Carne/análise , Extratos de Tecidos/química , Animais , Bovinos , Células Hep G2 , Humanos , Testes de Mutagenicidade , Água
16.
Environ Monit Assess ; 187(7): 397, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26038318

RESUMO

Concentrations of heavy metals and metalloid in borehole drinking water from 18 communities in Tarkwa, Ghana, were measured to assess the health risk associated with its consumption. Mean concentrations of heavy metals (µg/L) exceeded recommended values in some communities. If we take into consideration the additive effect of heavy metals and metalloid, then oral hazard index (HI) results raise concerns about the noncarcinogenic adverse health effects of drinking groundwater in Huniso. According to the US Environmental Protection Agency's (USEPA) guidelines, HI values indicating noncarcinogenic health risk for adults and children in Huniso were 0.781 (low risk) and 1.08 (medium risk), respectively. The cancer risk due to cadmium (Cd) exposure in adults and children in the sampled communities was very low. However, the average risk values of arsenic (As) for adults and children through drinking borehole water in the communities indicated medium cancer risk, but high cancer risk in some communities such as Samahu and Mile 7. Based on the USEPA assessment, the average cancer risk values of As for adults (3.65E-05) and children (5.08E-05) indicated three (adults) and five (children) cases of neoplasm in a hundred thousand inhabitants. The results of this study showed that residents in Tarkwa who use and drink water from boreholes could be at serious risk from exposure to these heavy metals and metalloid.


Assuntos
Arsênio/toxicidade , Água Potável/efeitos adversos , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Adulto , Arsênio/análise , Criança , Água Potável/análise , Monitoramento Ambiental , Gana , Ouro , Água Subterrânea/análise , Humanos , Metais Pesados/análise , Mineração , Medição de Risco , Poluentes Químicos da Água/análise
17.
Jpn J Vet Res ; 62(3): 107-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25282952

RESUMO

Contamination levels of coplanar polychlorinated biphenyls (Co-PCBs), polycyclic aromatic hydrocarbons (PAHs), and dichlorodiphenyltrichloroethane (DDTs) were measured in the entire body of the large Japanese field mouse (Apodemus speciosus) collected from Hokkaido (Ishikari and Rankoshi) and Aomori prefecture (Takko) in Japan. Higher concentrations of PCBs including Co-PCBs, were observed in the mice collected from Ishikari than those from Rankoshi. The concentration of PAHs in the soil from Ishikari was also higher than that in the other sampling sites. The findings suggest that Ishikari is the most polluted area, probably because of human activities, depending on the population distribution. However, the observed contaminant levels were extremely lower compared to those in previous studies. The ratio of testis weight to body weight (TW/BW) was the lowest in the mice collected from Ishikari, which is the area contaminated with PAHs and p,p'-dichlorodiphenyldichloroethylene (DDE). However, the serum testosterone levels of mice from the Ishikari area were higher than those from the non-contaminated other areas although no significant differences. Previous studies have shown that a low-level exposure to dioxin related compounds (DRCs) disturbances in sexual function, resulting in the production of testosterone. This study showed that POPs exposure is one of the possibility of the high testosterone concentration in the mice of the Ishikari area in addition to a cause of biological and environmental factors such as habitat density, age, temperatures and/or food riches.


Assuntos
Diclorodifenildicloroetano/toxicidade , Poluentes Ambientais/toxicidade , Murinae , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Peso Corporal , Diclorodifenildicloroetano/química , Diclorodifenildicloroetano/metabolismo , Monitoramento Ambiental , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Japão , Masculino , Tamanho do Órgão , Bifenilos Policlorados/química , Bifenilos Policlorados/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Testículo/anatomia & histologia
18.
Jpn J Vet Res ; 62(3): 143-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25282956

RESUMO

Teuri Island, Hokkaido in Japan is an important place for seabirds breeding. We measured the concentrations of heavy metals (Hg, Cd, Cr, Co, Ni, Cu, Zn, and Pb) and a metalloid (As) in rhinoceros auklet (Cerorhinca monocerata) (n = 7), thick-billed murre (Uria lomvia) (n = 2), spectacled guillemot (Cepphus carbo) (n = 6), slaty-backed gull (Larus schistisagus) (n = 15), jungle crow (Corvus macrorhynchos) (n = 3), Japanese anchovy (Engraulis japonica) (n = 6) and Atka mackerel (Pleurogrammus azonus) (n = 2). Spectacled guillemot had high As concentrations, with its source being their feeding habitat. Concentration of Hg in kidney of jungle crow was higher than other seabird species at Teuri.


Assuntos
Aves/metabolismo , Poluentes Ambientais/metabolismo , Metaloides/metabolismo , Metais/metabolismo , Animais , Monitoramento Ambiental , Poluentes Ambientais/química , Japão , Metaloides/química , Metais/química
19.
Sci Total Environ ; 892: 164595, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37270003

RESUMO

Concentrations of fipronil (Fip) and several of its derivatives were detected in samples from four rivers and four estuaries in Japan. LC-MS/MS analysis detected Fip and its derivatives, except for fipronil detrifluoromethylsulfinyl, in almost all samples. The total concentrations of the five compounds were approximately two-fold greater in river water (mean: 21.2, 14.1, and 9.95 ng/L in June, July, and September, respectively) compared to those in estuarine water (mean: 10.3, 8.67, and 6.71 ng/L, respectively). Fipronil, fipronil sulfone (Fip-S), and fipronil sulfide (Fip-Sf) represented more than 70 % of all compounds. This is the first report to demonstrate the contamination of estuarine waters of Japan by these compounds. We further investigated the potentially toxic effects of Fip, Fip-S, and Fip-Sf on the exotic mysid, Americamysis bahia (Crustacea: Mysidae). The lowest effective concentrations of Fip-S (10.9 ng/L) and Fip-Sf (19.2 ng/L) on mysid growth and molting was approximately 12.9- and 7.3-fold lower than Fip (140.3 ng/L), suggesting they had higher toxicity. Quantitative reverse transcription polymerase chain reaction analysis revealed that ecdysone receptor and ultraspiracle gene expression were not affected after 96-h of exposure to Fip, Fip-S, and Fip-Sf, suggesting that these genes may not be involved in the molting disruption induced by Fip, Fip-S, and Fip-Sf. Our findings suggest that environmentally relevant concentrations of Fip and its derivatives can disrupt the growth of A. bahia by promoting molting. However, further studies are required to elucidate its molecular mechanism.


Assuntos
Crustáceos , Muda , Poluentes Químicos da Água , Animais , Cromatografia Líquida , Crustáceos/efeitos dos fármacos , Crustáceos/genética , Crustáceos/crescimento & desenvolvimento , Estuários , Expressão Gênica , Japão , Espectrometria de Massas em Tandem , Água/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
PLoS One ; 18(1): e0277689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662783

RESUMO

As an animal familiar to humans, cats are considered to be sensitive to chemicals; cats may be exposed to polychlorinated biphenyls (PCBs) and decabromodiphenyl ether (BDE-209) from indoor dust, household products, and common pet food, leading to adverse endocrine effects, such as thyroid hormone dysfunction. To elucidate the general biological effects resulting from exposure of cats to PCBs and PBDEs, cats were treated with a single i.p. dose of a principal mixture of 12 PCBs and observed for a short-term period. Results revealed that the testis weight, serum albumin, and total protein of the treated group decrease statistically in comparison with those in the control group. The negative correlations suggested that the decrease in the total protein and albumin levels may be disturbed by 4'OH-CB18, 3'OH-CB28 and 3OH-CB101. Meanwhile, the serum albumin level and relative brain weight decreased significantly for cats subjected to 1-year continuous oral administration of BDE-209 in comparison to those of control cats. In addition, the subcutaneous fat as well as serum high-density lipoprotein (HDL) and triglycerides (TG) levels increased in cats treated with BDE-209 and down-regulation of stearoyl-CoA desaturase mRNA expression in the liver occurred. These results suggested that chronic BDE-209 treatment may restrain lipolysis in the liver, which is associated with lipogenesis in the subcutaneous fat. Evidence of liver and kidney cell damage was not observed as there was no significant difference in the liver enzymes, blood urea nitrogen and creatinine levels between the two groups of both experiments. To the best of our knowledge, this is the first study that provides information on the biochemical effects of organohalogen compounds in cats. Further investigations on risk assessment and other potential health effects of PCBs and PBDEs on the reproductive system, brain, and lipid metabolism in cats are required.


Assuntos
Bifenilos Policlorados , Masculino , Gatos , Humanos , Animais , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Éteres Difenil Halogenados/toxicidade , Fígado/metabolismo , Hormônios Tireóideos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA