RESUMO
PURPOSE: The correlation between cartilage thickness evaluated by 3D MRI and knee alignment has not been elucidated. The study's purpose was to retrospectively verify whether average cartilage thickness calculated by the automatic MRI 3D analysis system for each subregion was correlated with knee alignment. METHODS: A total of 53 patients underwent medial meniscus repair or high tibial osteotomy for medial knee osteoarthritis. Cartilage thickness was automatically calculated using 3D MRI software. Knee alignment, weight-bearing line ratio (WBLR), joint line convergence angle (JLCA), medial proximal tibial angle (MPTA), and lateral distal femoral angle (LDFA) were calculated on a weight-bearing long-leg radiograph using digital planning software. The association between knee alignment and the average cartilage thickness at 18 subregions in the medial femoral condyle (MFC) and medial tibial plateau (MTP) was evaluated using Spearman's rank correlation coefficient. RESULTS: Cartilage thickness of the MFC had moderately positive correlations with WBLR at four subregions and weak correlations at two subregions. Cartilage thickness of the MTP had moderately positive correlations with WBLR at four subregions. Cartilage thickness of the MFC had moderately negative correlations with JLCA at six subregions. Cartilage thickness of the MTP had moderately negative correlations with JLCA at four subregions and a weak correlation at one subregion. Conversely, cartilage thickness had weak correlations with MPTA or LDFA. CONCLUSIONS: In knees with pathological conditions in the medial compartment, cartilage thicknesses by 3D MRI had positive correlations with WBLR and JLCA at almost all subregions of the MFC and at the anterior-middle and central-external of the MTP. Treatment strategies should be considered in light of these regions. LEVEL OF EVIDENCE: Cross-sectional study (diagnosis); Level of evidence, 2.
RESUMO
BACKGROUND: The purpose of this study was to compare arthroscopic findings of a degenerative flap and radial tear of the medial meniscus (MM) before and one year after treatment by meniscus repair and synovial mesenchymal stem cell (MSC) transplantation. METHODS: Patients with a degenerative flap and radial MM tear that would generally be treated by meniscectomy were included. The patients ranged in age from 45 to 62 years and all underwent meniscus repair and synovium harvest at time 0. The digested synovium was cultured with autologous serum for 12 days, and an average of 4 × 107 MSCs were transplanted at two weeks. A second-look arthroscopy was performed at 52 weeks (n = 6). The average duration of symptoms was 24 months. For flap tears, arthroscopic findings were quantified in terms of the presence, stability, and smoothness of the meniscus at each zone and area. The Lysholm score was evaluated throughout the 52 week follow-up. RESULTS: Four patients with MM flap tears showed deficiencies in the central area at the posterior junctional zone before treatment, but this zone was completely restored to a stable and smooth condition in two patients and partially restored in the other two patients. The arthroscopy score for a flap tear at the central area of the posterior junctional zone was 0.3 ± 0.5 before treatment and 4.3 ± 2.1 after treatment. The score was significantly higher after treatment (p < 0.05, n = 4). The original radial MM tears in two patients were healed one year after treatment. Lysholm scores were significantly higher at 4 and 52 weeks after treatment than before treatment (n = 6). CONCLUSIONS: Arthroscopic findings for a degenerative flap and radial tear of the MM were improved at the central area of the posterior junctional zone one year after meniscus repair and MSC transplantation.
Assuntos
Transplante de Células-Tronco Mesenquimais , Lesões do Menisco Tibial , Artroscopia , Humanos , Meniscos Tibiais/cirurgia , Pessoa de Meia-Idade , Estudos Retrospectivos , Cirurgia de Second-Look , Lesões do Menisco Tibial/cirurgiaRESUMO
Synovial mesenchymal stem cells (MSCs) are an attractive cell source for transplantation because of their high chondrogenic potential, especially in areas like the meniscus of the knee. A synovial MSC suspension placed onto the meniscus for 10 min promoted healing of repaired meniscal tears that generally do not heal. Here, we quantified the proportion of human synovial MSCs that adhered to a porcine abraded meniscus, clarified their morphological changes, and revealed the mechanism by which the synovial MSCs adhered to the meniscus. The numbers of adhering cells at immediately after 10, 60 min and 6, 24 h after suspension placement were calculated. The meniscus surface was examined by scanning electron microscopy, and 50 cells were randomly selected at each time period, classified, and quantified for each of the six donors. Approximately 28% of the synovial MSCs immediately adhered to the meniscus after placement and the proportion of adhered cells increased further with time. All cells maintained a round shape for 60 min, and then transformed to a mixture of round and semi-flattened cells. By 24 h, flattened cells covered the meniscus. Microspikes were observed in 36% of the floating synovial MSCs and in 76% of the cells on the meniscus shortly after placement on the meniscus, then the proportion of cells with pseudopodia increased. The bleb-dominant cell proportion significantly decreased, and the smooth-dominant cell proportion increased within 60 min. Microspikes or the bodies of synovial MSCs were trapped by meniscal fibers immediately after placement. The proportion of adhered cells increased with time, and the cell morphology changed dynamically for 24 h as the synovial MSCs adhered to the meniscus. The MSCs in the round morphological state had a heterogeneous morphology. The microspikes, and the subsequent development of pseudopodia, may play an important role in adhesion onto the meniscus.
Assuntos
Adesão Celular/fisiologia , Menisco/metabolismo , Células-Tronco Mesenquimais , Membrana Sinovial/citologia , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , SuínosRESUMO
BACKGROUND: Meniscal extrusion results in loss of the ability to resist hoop strain and biomechanical overload on the joint articular surface. A centralization technique has been developed to overcome these problems. In this study, we analyzed the biomechanics of the extruded and centralized lateral meniscus (LM) in porcine knee joints at different flexion angles. METHODS: Porcine knee joints (n = 8) were set in the universal tester and each knee was tested under the following states: 1) intact; 2) extrusion-meniscal extrusion was created by resecting the posterior root of the LM and posterior synovial capsule; and 3) centralization-centralization was performed by two anchors inserted in the lateral tibial plateau. Deviation distance of the meniscus, contact pressure, and contact area in the anterior LM, middle LM, posterior LM, and the contact pressure of the tibial cartilage were evaluated with an axial compressive force of 200 N at knee flexion angles of 30°, 45°, 60°, and 90°. RESULTS: The deviation distance of LM significantly increased in extrusion but was restored to the intact status after centralization at all angles. Both the contact pressure and area significantly decreased in extrusion and were restored after centralization close to the intact status in the anterior and middle LM; in the posterior LM, however, decreased contact pressure and area were not restored after centralization. The contact pressure of the tibial cartilage increased significantly in extrusion but decreased close to the intact status after centralization. CONCLUSIONS: This centralization procedure could reduce extrusion of the LM and restore the load-distributing function of the anterior-middle LM. However, the procedure itself could not restore hoop function in cases where the defect lies in the posterior LM.
Assuntos
Articulação do Joelho/cirurgia , Lesões do Menisco Tibial/fisiopatologia , Lesões do Menisco Tibial/cirurgia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Articulação do Joelho/fisiopatologia , Procedimentos Ortopédicos , Amplitude de Movimento Articular , Estresse Mecânico , SuínosRESUMO
PURPOSE: The purpose of this study was to investigate the biomechanical properties of load distribution following a centralization procedure for extruded lateral menisci with posterior root deficiency in a porcine model. METHODS: Six porcine knee joints were analyzed in a universal tester, as follows: 1) Intact; 2) Extrusion (meniscus extrusion was created by resecting the posterior root of the lateral meniscus, as well as the posterior synovial capsule); and 3) Centralization (two anchors were inserted at the lateral tibial plateau, and the meniscus was sutured to secure it close to the original position). Meniscus extrusion was evaluated using two markers put on the posterior cruciate ligament and the lateral meniscus, and the load distribution were assessed using a pressure mapping sensor system after applying a loading force of 200 N to the knee joint. RESULTS: Distance between two markers (mm, Average; 95% CI) was larger in the extrusion group (21.9; 17.8, 25.6) than in the intact (18.1; 15.1, 22.7) or the centralization (15.3; 12.9, 18.0) groups. The contact area (mm2) in the middle of the meniscus was significantly smaller in the extrusion group (45.8; 18.5, 73.2) than in the intact (85.7; 72.1, 99.2) or the centralization (98.3; 88.8, 107.8) groups. The maximum contact pressure (MPa) in the tibial plateau was significantly higher in the extrusion group (0.37; 0.35, 0.40) than in the intact (0.29; 0.21, 0.37) or the centralization (0.29; 0.22, 0.36) groups. CONCLUSIONS: The centralization procedure enabled a reduction of the meniscus extrusion in the lateral meniscus with posterior root deficiency and restored the maximum load and contact pressure to values close to those of the normal knee joint.
Assuntos
Articulação do Joelho/fisiopatologia , Articulação do Joelho/cirurgia , Lesões do Menisco Tibial/fisiopatologia , Lesões do Menisco Tibial/cirurgia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Procedimentos Ortopédicos , Estresse Mecânico , SuínosRESUMO
BACKGROUND: Synovial mesenchymal stem cells (MSCs) are an attractive cell source for cartilage and meniscus regeneration. The optimum cryopreservation medium has not been determined, but dimethylsulfoxide (DMSO) should be excluded, if possible, because of its toxicity. The purposes of our study were to examine the possible benefits of higher concentrations of serum and the effectiveness of 100% serum (without DMSO) for the cryopreservation of synovial MSCs. METHODS: Human synovium was harvested from the knees of four donors with osteoarthritis during total knee arthroplasty. Synovial MSCs (8 × 105 cells) were suspended in 400 µL medium and used as a Time 0 control. The same number of synovial MSCs was also suspended in 400 µL α-MEM medium containing 10% fetal bovine serum (FBS) (5% DMSO, and 1% antibiotic), 95% FBS (and 5% DMSO), or 100% FBS (no DMSO) and cryopreserved at - 80 °C for 7 days. After thawing, the cell suspensions (1.5 µL; 3 × 103 cells) were cultured in 60 cm2 dishes for 14 days for colony formation assays. Additional 62.5 µL samples of cell suspensions (1.25 × 105 cells) were added to tubes and cultured for 21 days for chondrogenesis assays. RESULTS: Colony numbers were significantly higher in the Time 0 and 95% FBS groups than in the 10% FBS group (n = 24). Colony numbers were much lower in the 100% FBS group than in the other three groups. The cell numbers per dish reflected the colony numbers. Cartilage pellet weights were significantly heavier in the 95% FBS group than in the 10% FBS group, whereas no difference was observed between the Time 0 and the 95% FBS groups (n = 24). No cartilage pellets formed at all in the 100% FBS group. CONCLUSION: Synovial MSCs cryopreserved in 95% FBS with 5% DMSO maintained their colony formation and chondrogenic abilities to the same levels as observed in the cells before cryopreservation. Synovial MSCs cryopreserved in 100% FBS lost their colony formation and chondrogenic abilities.
Assuntos
Condrogênese/efeitos dos fármacos , Criopreservação/métodos , Crioprotetores/farmacologia , Células-Tronco Mesenquimais , Membrana Sinovial/citologia , Idoso , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Crioprotetores/química , Dimetil Sulfóxido/química , Dimetil Sulfóxido/farmacologia , Feminino , Humanos , Articulação do Joelho/citologia , Transplante de Células-Tronco Mesenquimais , Osteoartrite/terapia , Soro/químicaRESUMO
BACKGROUND: Mobilization of mesenchymal stem cells (MSCs) from the synovium was revealed using a "suspended synovium culture model" of osteoarthritis (OA). The pathology of rheumatoid arthritis (RA) differs from that of OA. We investigated whether mobilization of MSCs from the synovium also occurred in RA, and we compared the properties of synovial MSCs collected from suspended synovium culture models of RA and OA. METHODS: Human synovium was harvested during total knee arthroplasty from the knee joints of patients with RA (n = 8) and OA (n = 6). The synovium was suspended in a bottle containing culture medium and a culture dish at the bottom. Cells were harvested from the dish and analyzed. RESULTS: No significant difference was observed between RA and OA in the harvested cell numbers per g of synovium. However, the variation in the number of cells harvested from each donor was greater for RA than for OA. The harvested cells were multipotent and no difference was observed in the cartilage pellet weight between RA and OA. The surface epitopes of the cells in RA and OA were similar to those of MSCs. CONCLUSION: Mobilization of MSCs from the synovium was demonstrated using a suspended synovium culture model for RA. The harvested cell numbers, chondrogenic potentials, and surface epitope profiles were comparable between the RA and OA models.
Assuntos
Artrite Reumatoide/patologia , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/patologia , Membrana Sinovial/citologia , Membrana Sinovial/fisiologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Meniscus surgery is the most commonly performed orthopedic surgery, and despite recent emphasis on saving the meniscus, the current status of meniscus surgeries is little known in many countries, including Japan. The National Database of Health Insurance Claims and Specific Health Checkups of Japan and the Statistics of Medical Care Activities in Public Health Insurance track meniscus surgeries through health insurance claims. The National Database provides the numbers for 2014 and 2015, and the Statistics of Medical Care Activities provides the numbers from June 2011 to June 2016. Our aim was to analyze isolated meniscus surgery numbers and meniscus repair ratios by age group based on the National Database and evaluate trends of meniscus repair ratios for the latest six years from the Statistics of Medical Care Activities. METHODS: Meniscus surgeries by age group were counted from the National Database for 2014-2015, and meniscus repair ratios (meniscus repairs/meniscus surgeries) were calculated. The numbers were also counted from the Statistics of Medical Care Activities in 2011-2016. For statistical analysis of annual trends of meniscus repair ratios, the Cochran-Armitage trend test was used. Meniscus surgeries with concomitant knee ligament surgeries were excluded. RESULTS: According to the National Database, isolated meniscus surgeries totaled 34,966 in 2015, with peak ages of patients in their late teens and 60s. The meniscus repair ratio was 19% in 2014 and 24% in 2015. According to the Statistics of Medical Care Activities, the meniscus repair ratio was 9% in 2011 and significantly increased to 25% in 2016 (p = 0.0008). The ratio also increased significantly in each age group between the early 20s and late 70s. CONCLUSIONS: Approximately 35,000 meniscus surgeries are performed in Japan annually, with peak ages in the late teens and 60s. The number of meniscus repairs has increased over the past six years.
Assuntos
Meniscectomia/tendências , Meniscos Tibiais/cirurgia , Lesões do Menisco Tibial/cirurgia , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Bases de Dados Factuais , Feminino , Humanos , Incidência , Japão/epidemiologia , Masculino , Meniscectomia/métodos , Meniscos Tibiais/fisiopatologia , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/fisiopatologia , Prognóstico , Estudos Retrospectivos , Medição de Risco , Distribuição por Sexo , Lesões do Menisco Tibial/diagnóstico por imagem , Lesões do Menisco Tibial/epidemiologia , Resultado do Tratamento , Adulto JovemRESUMO
PURPOSE: To develop an in vitro model, the "suspended synovium culture model," to demonstrate the mobilization of mesenchymal stem cells (MSCs) from the synovium into a noncontacted culture dish through culture medium. In addition, to examine which synovium, fibrous synovium or adipose synovium, released more MSCs in the knee with osteoarthritis. METHODS: Human synovial tissue was harvested during total knee arthroplasty from knee joints of 34 patients with osteoarthritis (28 patients: only fibrous synovium, 6 patients: fibrous and adipose synovium). One gram of synovium was suspended with a thread in a bottle containing 40 mL of culture medium and a 3.5-cm-diameter culture dish at the bottom. After 7 days, the culture dish in the bottle was examined. For the cells harvested, multipotentiality and surface epitopes were analyzed. The numbers of colonies derived from fibrous synovium and adipose synovium were also compared. RESULTS: Colonies of spindle-shaped cells were observed in the culture dish in all 28 donors. Colonies numbered 26 on average, and the cells derived from colony-forming cells had multipotentiality for chondrogenesis, adipogenesis, calcification, and surface epitopes similar to MSCs. The number was colonies was significantly higher in fibrous synovium than in adipose synovium (P < .05, n = 6). CONCLUSIONS: We developed a suspended synovium culture model. Suspended synovium was able to release MSCs into a noncontacted culture dish through medium in a bottle. Fibrous synovium was found to release greater numbers of MSCs than adipose synovium in our culture model. CLINICAL RELEVANCE: This model could be a valuable tool to screen drugs capable of releasing MSCs from the synovium into synovial fluid.
Assuntos
Tecido Adiposo/patologia , Células-Tronco Mesenquimais/patologia , Osteoartrite do Joelho/patologia , Membrana Sinovial/patologia , Adipogenia/fisiologia , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Condrogênese/fisiologia , Ensaio de Unidades Formadoras de Colônias , Meios de Cultura , Feminino , Fibrose , Humanos , Articulação do Joelho/patologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/cirurgia , Técnicas de Cultura de TecidosRESUMO
Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats.
Assuntos
Tendão do Calcâneo/citologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Regeneração/fisiologia , Membrana Sinovial/citologia , Animais , Cartilagem Articular , Modelos Animais de Doenças , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Ratos , Medicina Regenerativa/métodosRESUMO
In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies.
Assuntos
Orelha/anatomia & histologia , Cartilagem Elástica/citologia , Cartilagem Hialina/patologia , Articulações/patologia , Medicina Regenerativa , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Separação Celular , Células Clonais , Cães , Humanos , Transplante AutólogoRESUMO
Introduction: To ensure the sterility of cell products that cannot undergo conventional sterilization processes, it is imperative to establish and maintain a clean room environment, regulated through environmental monitoring, including particle counts. Nevertheless, the impact of particles generated by operators as potential contaminants remains uncertain. Thus, in this study, we conducted an accelerated test to assess the correlation between particles generated by operators and airborne bacteria, utilizing biosafety cabinets within a typical laboratory setting. These biosafety cabinets create a controlled environment with air conditioning and high-efficiency particulate air (HEPA) filters, offering fundamental data relevant to cell production. Materials and methods: We conducted a simulation followed by real-time experiments involving human operations to explore the quantity of particles, particle sizes, and the percentage of bacteria within these particles. This investigation focused on conditions with heightened particle generation from operators within a biosafety cabinet. The experiment was conducted on operators wearing textile and non-woven dustless clothing within biosafety cabinets. It entailed tapping the upper arms for a duration of 2 min. Results: Observations under biosafety cabinet-off conditions revealed the presence of various particles and falling bacteria in textile clothing. In contrast, no particles or falling bacteria were detected in operators wearing dustless clothing within biosafety cabinets. Notably, a correlation between 5 µm particles and colony-forming units in textile clothing was identified through this analysis. The ratio of falling bacteria to the total number of particles within the biosafety cabinet was 0.8 ± 0.5 % for textile clothing, while it was significantly lower at 0.04 ± 0.2 % for dustless clothing. Conclusion: This study demonstrated that the number of particles and falling bacteria varied depending on the type of clothing and that quantitative data could be used to identify risks and provide basic data for operator education and evidence-based control methods in aseptic manufacturing areas. Although, this study aims to serve as an accelerated test operating under worst-case conditions, the results need to make sure the study range in general research.
RESUMO
Introduction: Cell-processing facilities face the risk of environmental bacteria contaminating biosafety cabinets during processing, and manual handling of autologous cell products can result in contamination. We propose a risk- and evidence-based cleaning method for cross-contamination, emphasizing proteins and DNA. Methods: The transition and residual risks of the culture medium were assessed by measuring both wet and dried media using fluorescence intensity. Residual proteins and DNA in dried culture medium containing HT-1080 cells were analyzed following ultraviolet (UV) irradiation, wiping, and disinfectant treatment. Results: Wet conditions showed a higher transition to distilled water (DW), whereas dry conditions led to higher residual amounts on SUS304 plates. Various cleaning methods for residual culture medium were examined, including benzalkonium chloride with a corrosion inhibitor (BKC + I) and DW wiping, which demonstrated significantly lower residual protein and DNA compared to other methods. Furthermore, these cleaning methods were tested for residual medium containing cells, with BKC + I and DW wiping resulting in an undetectable number of cells. However, in some instances, proteins and DNA remained. Conclusions: The study compared cleaning methods for proteins and DNA in cell products, revealing their advantages and disadvantages. Peracetic acid (PAA) proved effective for nucleic acids but not proteins, while UV irradiation was ineffective against both proteins and DNA. Wiping emerged as the most effective method, even though traceability remained challenging. However, wiping with ETH was not effective as it caused protein immobilization. Understanding the characteristics of these cleaning methods is crucial for developing effective contamination control strategies.
RESUMO
Knee osteoarthritis is characterized by articular cartilage wear, with its morphological progression not fully understood. This study aimed to elucidate factors contributing to femoral cartilage defects and their expansion in medial knee osteoarthritis, using a novel approach analyzing cross-sectional MRI data arranged by disease severity. From a cohort of 277 women in the Kanagawa Knee Study, we selected 17 knees that showed a cartilage area ratio < 0.99 in the posteromedial femoral cartilage region as the subjects for this study. The morphological relationships between femoral cartilage defects and menisci, as well as between femoral cartilage defects and tibial cartilage lesions, were investigated. Among subjects aged 30 to 79 years, the proportion was significantly higher in the 70-79 age group. In 11 cases, the outer edge of the cartilage defect was observed to coincide with the inner edge of the medial meniscus. Tibial cartilage lesions corresponded to femoral cartilage defects in 15 cases. Our 3D MRI analysis demonstrated that femoral cartilage defects were initially caused by either medial meniscus extrusion or kissing tibial cartilage lesions, with subsequent expansion of these defects resulting from the combined effects of ongoing medial meniscus extrusion and progressive tibial cartilage degeneration.Trial registration: UMIN, UMIN000032826; September 1, 2018.
Assuntos
Cartilagem Articular , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Meniscos Tibiais , Osteoartrite do Joelho , Humanos , Pessoa de Meia-Idade , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Imageamento por Ressonância Magnética/métodos , Feminino , Idoso , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Adulto , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/patologia , Imageamento Tridimensional/métodos , Fêmur/diagnóstico por imagem , Fêmur/patologia , Tíbia/diagnóstico por imagem , Tíbia/patologia , Estudos Transversais , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologiaRESUMO
The inherent variability in cell culture techniques hinders their reproducibility. To address this issue, we introduce a comprehensive cell observation device. This new approach enhances the features of existing home-use scanners by implementing a pattern sheet. Compared with fluorescent staining, our method over- or underestimated the cell count by a mere 5%. The proposed technique showcased a strong correlation with conventional methodologies, displaying R2 values of 0.91 and 0.99 compared with the standard chamber and fluorescence methods, respectively. Simulations of microscopic observations indicated the potential to estimate accurately the total cell count using just 20 fields of view. Our proposed cell-counting device offers a straightforward, noninvasive means of measuring the number of cultured cells. By harnessing the power of deep learning, this device ensures data integrity, thereby making it an attractive option for future cell culture research.
RESUMO
BACKGROUND: The vancomycin presoaking technique (wherein grafts are treated with a vancomycin solution [VS] for anterior cruciate ligament reconstruction [ACLR]) reduces the infection rate after ACLR. However, the effects of this technique on graft-bone healing have not been fully elucidated. PURPOSE: To investigate the effects of vancomycin presoaking on graft-bone healing in a rat ACLR model. STUDY DESIGN: Controlled laboratory study. METHODS: Long flexor digitorum longus tendons were obtained from 9 Wistar rats, and each was randomly allocated to the normal saline (NS) or VS groups. The grafts were immersed in sterile saline for 30 minutes in the NS group and in a 5-mg/mL VS in the VS group. The presence of time-zero graft bacterial contamination was confirmed, and the grafts were incubated in Fluidised Thioglycollate Broth for 2 weeks. ACLR was performed on the right knees of 65 male Wistar rats using the flexor digitorum longus tendons. Each graft was similarly treated. Biomechanical testing, micro-computed tomography, and histological evaluations were performed 4 and 12 weeks postoperatively. RESULTS: The VS group showed significantly reduced graft contamination at time zero (P = .02). The mean maximum loads to failure were 13.7 ± 8.2 N and 11.6 ± 4.8 N in the NS and VS groups, respectively, at 4 weeks (P = .95); and 23.2 ± 13.2 N and 30.4 ± 18.0 N in the NS and VS groups, respectively, at 12 weeks (P = .35). Regarding micro-computed tomography, the mean bone tunnel volumes were 3.76 ± 0.48 mm3 and 4.40 ± 0.58 mm3 in the NS and VS groups, respectively, at 4 weeks (P = .41); and 3.51 ± 0.38 mm3 and 3.67 ± 0.35 mm3 in the NS and VS groups, respectively, at 12 weeks (P = .54). Histological semiquantitative examination revealed no clear between-group differences at any time point. CONCLUSION: Presoaking grafts in vancomycin in a rat ACLR model demonstrated no discernible adverse effects on short- and midterm biomechanical, radiological, and histological investigations. CLINICAL RELEVANCE: The findings provide guidance for surgeons when considering this technique.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Ratos Wistar , Vancomicina , Animais , Vancomicina/farmacologia , Reconstrução do Ligamento Cruzado Anterior/métodos , Masculino , Ratos , Antibacterianos/farmacologia , Tendões/transplante , Tendões/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Microtomografia por Raio-XRESUMO
Purpose: The correlation of cartilage thickness measured by three-dimensional (3D) magnetic resonance imaging (MRI) and the medial meniscal coverage ratio (MMCR), which presented pathology of the medial meniscus extrusion (MME) in 3D MRI, has not yet been elucidated. The study's purpose was to retrospectively verify whether the average cartilage thickness calculated by the automatic MRI 3D analysis system for each subregion was correlated with MMCR. Methods: A total of 60 patients underwent medial meniscus repair or high tibial osteotomy to treat their medial knee osteoarthritis. Cartilage thickness and MMCR were automatically calculated using 3D MRI software. The MMCR was defined as the ratio of the area covered by the meniscus within the medial tibial cartilage area to the total medial tibial cartilage area. The association between MMCR and the average cartilage thickness at 15 subregions in the medial femoral condyle (MFC) and medial tibial plateau (MTP) was evaluated using Spearman's rank correlation coefficient. Results: Kellgren-Lawrence grade exhibited a negative correlation with MMCR and a positive correlation with MME width. Cartilage thickness in the MTP had a moderately positive correlation with MMCR at four subregions and a weakly positive correlation at another subregion. Cartilage thickness in the MFC showed a moderately positive correlation with MMCR at five subregions and a weakly positive correlation at one subregion. Conclusions: Cartilage thickness calculated by automatic MRI 3D analysis system had a positive correlation with MMCR for all subregions of the anterior and middle subregions in the MFC and for five regions of nine subregions of the anterior and middle subregions in the MTP. Level of evidence: Level II, cross-sectional study (diagnosis).
RESUMO
Introduction: The process of cell product changeover poses a high risk of cross-contamination. Hence, it is essential to minimize cross-contamination while processing cell products. Following its use, the surface of a biosafety cabinet is commonly disinfected by ethanol spray and manual wiping methods. However, the effectiveness of this protocol and the optimal disinfectant have not yet been evaluated. Here, we assessed the effect of various disinfectants and manual wiping methods on bacterial removal during cell processing. Methods: The hard surface carrier test was performed to evaluate the disinfectant efficacy of benzalkonium chloride with a corrosion inhibitor (BKC + I), ethanol (ETH), peracetic acid (PAA), and wiping against Bacillus subtilis endospores. Distilled water (DW) was used as the control. A pressure sensor was employed to investigate the differences in loading under dry and wet conditions. The pre-spray for wiping was monitored by eight operators using a paper that turns black when wet. Chemical properties, including residual floating proteins, and mechanical properties, such as viscosity and coefficient of friction, were examined. Results: In total, 2.02 ± 0.21-Log and 3.00 ± 0.46-Log reductions from 6-Log CFU of B. subtilis endospores were observed for BKC + I and PAA, respectively, following treatment for 5 min. Meanwhile, wiping resulted in a 0.70 ± 0.12-Log reduction under dry conditions. Under wet conditions, DW and BKC + I showed 3.20 ± 0.17-Log and 3.92 ± 0.46-Log reductions, whereas ETH caused a 1.59 ± 0.26-Log reduction. Analysis of the pressure sensor suggested that the force was not transmitted under dry conditions. Evaluation of the amount of spray by eight operators showed differences and bias in the spraying area. While ETH had the lowest ratio in the protein floating and collection assays, it exhibited the highest viscosity. BKC + I had the highest friction coefficient under 4.0-6.3 mm/s; however, that of BKC + I decreased and became similar to the friction coefficient of ETH under 39.8-63.1 mm/s. Conclusions: DW and BKC + I are effective for inducing a 3-Log reduction in bacterial abundance. Moreover, the combination of optimal wet conditions and disinfectants is essential for effective wiping in specific environments containing high-protein human sera and tissues. Given that some raw materials processed in cell products contain high protein levels, our findings suggest that a complete changeover of biosafety cabinets is necessary in terms of both cleaning and disinfection.
RESUMO
Introduction: Cell processing operators (CPOs) use a variety of disinfectants that vaporize in the workspace environment. These disinfectants can induce allergic reactions in CPOs, due to their long working hours at cell processing facilities (CPFs). Ionic substances such as CH3COO- generated from peracetic acid, nitrogen oxides (NOx) and sulfur oxides (SOx) from outdoor environment are also known to pollute air. Therefore, our objective was to assess the air quality in CPFs and detect volatile organic compounds (VOCs) from disinfectants and building materials, and airborne ionic substances from outdoor air. Methods: Sampling was conducted at three CPFs: two located in medical institutions and one located at a different institution. Air samples were collected using a flow pump. Ion chromatographic analysis of the anionic and cationic compounds was performed. For VOC analysis, a thermal desorption analyzer coupled with capillary gas chromatograph and flame ionization detector was used. Results: Analysis of the ionic substances showed that Cl-, NOx, and SOx, which were detected in large amounts in the outdoor air, were relatively less in the CPFs. Ethanol was detected as the main component in the VOC analysis. Toluene was detected at all sampling points. As compared to the other environments, air in the incubator contained larger amounts of VOCs, that included siloxane, tetradecane, and aromatics. Conclusions: No VOCs or ionic substances of immediate concern to the health of the CPOs were detected during the non-operating period. However, new clinical trials of cell products are currently underway in Japan, and a variety of new cell products are expected to be approved. With an increase in cell processing, health risks to CPOs that have not been considered previously, may become apparent. We should continue to prepare for the future expansion of the industry using a scientific approach to collect various pieces of information and make it publicly available to build a database.
RESUMO
Introduction: During changeover in cell-product processing, it is essential to minimize cross-contamination risks. These risks differ depending on the patient from whom the cells were derived. Human error during manual cell-product processing increases the contamination risk in biosafety cabinets. Here, we evaluate the risk of cross-contamination during manual cell-processing to develop an evidence-based changeover method for biosafety cabinets. Methods: Contaminant coverage was analyzed during simulated medium preparation, cell seeding, and waste liquid decanting by seven operators, classified by skill. Environmental bacteria were surveyed at four participating facilities. Finally, we assessed the effect of conventional UV irradiation in biosafety cabinets on bacteria and fungi that pose a cross-contamination risk. Results: Under simulated conditions, scattered contamination occurred via droplets falling onto the surface from heights of 30 cm, and from bubbles rupturing at this height. Visible traces of contaminants were distributed up to 50 cm from the point of droplet impact, or from the location of the pipette tip when the bubble ruptured. In several facilities, we detected Bacillus subtilis, of which the associated endospores are highly resistant to disinfection. Irradiation at 50 mJ/cm2 effectively eliminated Bacillus subtilis vegetative cells and Aspergillus brasiliensis, which is highly resistant to UV. Bacillus subtilis endospores were eliminated at 100 mJ/cm2. Conclusions: Under these simulated optimal conditions, UV irradiation successfully prevents cross-contamination. Therefore, following cell-product processing, monitoring the UV dose in the biosafety cabinet during cell changeover represents a promising method for reducing cross-contamination.