Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nagoya J Med Sci ; 86(3): 435-451, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39355364

RESUMO

Neuroectoderm-derived tumors characteristically express gangliosides such as GD3 and GD2. Many studies have reported that gangliosides GD3/GD2 enhance malignant phenotypes of cancers. Recently, we reported that human gliomas expressing GD3/GD2 exhibited enhanced malignant phenotypes. Here, we investigated the function of GD3/GD2 in glioma cells and GD3/GD2-expressing glioma-derived exosomes. As reported previously, transfectant cells of human glioma U251 MG expressing GD3/GD2 showed enhanced cancer phenotypes compared with GD3/GD2-negative controls. When GD3/GD2-negative cells were treated with exosomes secreted from GD3/GD2-positive cells, clearly increased malignant properties were observed. Furthermore, increased phosphorylation of signaling molecules was detected after 5-15 min of exosome treatment, ie, higher tyrosine phosphorylation of platelet-derived growth factor receptor, focal adhesion kinase, and paxillin was found in treated cells than in controls. Phosphorylation of extracellular signal-regulated kinase-1/2 was also enhanced. Consequently, it is suggested that exosomes secreted from GD3/GD2-positive gliomas play important roles in enhancement of the malignant properties of glioma cells, leading to total aggravation of heterogenous cancer tissues, and also in the regulation of tumor microenvironments.


Assuntos
Exossomos , Gangliosídeos , Glioma , Fenótipo , Gangliosídeos/metabolismo , Humanos , Exossomos/metabolismo , Glioma/metabolismo , Glioma/patologia , Linhagem Celular Tumoral , Fosforilação , Transdução de Sinais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Paxilina/metabolismo
2.
Sci Rep ; 13(1): 4987, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973292

RESUMO

Exosomes (small extracellular vesicles: EVs) have attracted increasing attention from basic scientists and clinicians since they play important roles in cell-to-cell communication in various biological processes. Various features of EVs have been elucidated regarding their contents, generation and secretion mechanisms, and functions in inflammation, regeneration, and cancers. These vesicles are reported to contain proteins, RNAs, microRNAs, DNAs, and lipids. Although the roles of individual components have been rigorously studied, the presence and roles of glycans in EVs have rarely been reported. In particular, glycosphingolipids in EVs have not been investigated to date. In this study, the expression and function of a representative cancer-associated ganglioside, GD2, in malignant melanomas was investigated. Generally, cancer-associated gangliosides have been shown to enhance malignant properties and signals in cancers. Notably, EVs derived from GD2-expressing melanomas enhanced the malignant phenotypes of GD2-negative melanomas, such as cell growth, invasion, and cell adhesion, in a dose-dependent manner. The EVs also induced increased phosphorylation of signaling molecules such as EGF receptor and focal adhesion kinase. These results suggest that EVs released from cancer-associated ganglioside-expressing cells exert many functions that have been reported as a function of these gangliosides and regulate microenvironments, including total aggravation of heterogeneous cancer tissues, leading to more malignant and advanced cancer types.


Assuntos
Vesículas Extracelulares , Gangliosídeos , Melanoma , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Gangliosídeos/análise , Gangliosídeos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA