Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Opt Express ; 31(8): 12549-12561, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157412

RESUMO

The light-matter interaction between plasmonic nanocavity modes and excitons at the nanometer scale is here addressed in the scanning tunneling microscope configuration where an MoSe2 monolayer is located between the tip and the substrate. We investigate by optical excitation the electromagnetic modes of this hybrid Au/MoSe2/Au tunneling junction using numerical simulations where electron tunneling and the anisotropic character of the MoSe2 layer are taken into account. In particular, we pointed out gap plasmon modes and Fano-type plasmon-exciton coupling taking place at the MoSe2/Au substrate interface. The spectral properties and spatial localization of these modes are studied as a function of the tunneling parameters and incident polarization.

2.
Nanotechnology ; 34(1)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36179662

RESUMO

Active suspended membranes are an ideal test-bench for experimenting with novel laser geometries and principles. We show that adding thin AlGaAs barrier near the top and bottom Air/GaAs interfaces of the membrane significantly reduces the carriers non-radiative recombinations and decreases the threshold of test photonic crystal test lasers. We review the existing literature on photonic crystal membrane fabrication and propose an overview of the significant defects that can be induced by each fabrication step. Finally we propose a complete processing scheme that overcome most of these defects.

3.
Nanotechnology ; 30(16): 165101, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654336

RESUMO

Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Moreover, the investigation of the protein conformational changes after adhesion and dehydration is of importance to tackle problems related to the interaction of proteins with solid surfaces. In this paper the conformational changes of wild-type Discosoma recombinant red fluorescent proteins (DsRed) adhered on silver nanoparticles (AgNPs)-based nanocomposites are explored via surface-enhanced Raman scattering (SERS). Originality in the present approach is to work on dehydrated DsRed thin protein layers in link with natural conditions during drying. To enable the SERS effect, plasmonic substrates consisting of a single layer of AgNPs encapsulated by an ultra-thin silica cover layer were elaborated by plasma process. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.


Assuntos
Antozoários/metabolismo , Proteínas Luminescentes/química , Nanocompostos/química , Prata/química , Animais , Dessecação , Nanopartículas Metálicas/química , Modelos Moleculares , Conformação Proteica , Análise Espectral Raman , Propriedades de Superfície , Proteína Vermelha Fluorescente
4.
Opt Express ; 26(22): 29411-29423, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30470105

RESUMO

We report on the surface enhanced resonant Raman scattering (SERRS) in hybrid MoSe2@Au plasmonic-excitonic nanostructures, focusing on the situation where the localized surface plasmon resonance of Au nanodisks is finely tuned to the exciton absorption of monolayer MoSe2. Using a resonant excitation, we investigate the SERRS in MoSe2@Au and the resonant Raman scattering (RRS) in a MoSe2@SiO2 reference. Both optical responses are compared to the non-resonant Raman scattering signal, thus providing an estimate of the relative contributions from the localized surface plasmons and the confined excitons to the Raman scattering enhancement. We determine a SERRS/RRS enhancement factor exceeding one order of magnitude. Furthermore, using numerical simulations, we explore the optical near-field properties of the hybrid MoSe2@Au nanostructure and investigate the SERRS efficiency dependence on the nanodisk surface morphology and on the excitation wavelength. We demonstrate that a photothermal effect, due to the resonant plasmonic pumping of electron-hole pairs into the MoSe2 layer, and the surface roughness of the metallic nanostructures are the main limiting factors of the SERRS efficiency.

5.
Opt Lett ; 40(9): 2116-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927799

RESUMO

When the size of metal nanoparticles is smaller than typically 10 nm, their optical response becomes sensitive to both spatial dispersion and quantum size effects associated with the confinement of the conduction electrons inside the particle. In this Letter, we propose a nonlocal scheme to compute molecular decay rates near spherical nanoparticles which includes the electron-electron interactions through a simple model of electronic polarizabilities. The plasmonic particle is schematized by a dynamic dipolar polarizability α(NL)(ω), and the quantum system is characterized by a two-level system. In this scheme, the light matter interaction is described in terms of classical field susceptibilities. This theoretical framework could be extended to address the influence of nonlocality on the dynamics of quantum systems placed in the vicinity of nano-objects of arbitrary morphologies.

6.
Langmuir ; 31(4): 1362-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25563697

RESUMO

Low size dispersity silver nanoparticles (ca. 6 nm) have been synthesized by the hydrogenolysis of silver amidinate in the presence of hexadecylamine. Combining NMR techniques with SERS and DFT modeling, it is possible to observe an original stabilization mechanism. Amidine moiety is strongly coordinated to the Ag(0) nanoparticles surface whereas HDA ligand is necessary to prevent agglomeration, although it is only weakly interacting with the surface.

7.
Adv Sci (Weinh) ; 11(7): e2305182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072637

RESUMO

The optical response of 2D layered perovskites is composed of multiple equally-spaced spectral features, often interpreted as phonon replicas, separated by an energy Δ ≃ 12 - 40 meV, depending upon the compound. Here the authors show that the characteristic energy spacing, seen in both absorption and emission, is correlated with a substantial scattering response above ≃ 200 cm-1 (≃ 25 meV) observed in resonant Raman. This peculiar high-frequency signal, which dominates both Stokes and anti-Stokes regions of the scattering spectra, possesses the characteristic spectral fingerprints of polarons. Notably, its spectral position is shifted away from the Rayleigh line, with a tail on the high energy side. The internal structure of the polaron consists of a series of equidistant signals separated by 25-32 cm-1 (3-4 meV), depending upon the compound, forming a polaron vibronic progression. The observed progression is characterized by a large Huang-Rhys factor (S > 6) for all of the 2D layered perovskites investigated here, indicative of a strong charge carrier - lattice coupling. The polaron binding energy spans a range ≃ 20-35 meV, which is corroborated by the temperature-dependent Raman scattering data. The investigation provides a complete understanding of the optical response of 2D layered perovskites via the direct observation of polaron vibronic progression. The understanding of polaronic effects in perovskites is essential, as it directly influences the suitability of these materials for future opto-electronic applications.

8.
Opt Express ; 21(4): 4551-9, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23481988

RESUMO

We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.


Assuntos
Luz , Modelos Teóricos , Refratometria/métodos , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Fótons
9.
Nano Lett ; 11(8): 3301-6, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21692453

RESUMO

In this letter, the ultrafast vibrational dynamics of individual gold nanorings has been investigated by femtosecond transient absorption spectroscopy. Two acoustic vibration modes have been detected and identified. The influence of the mechanical coupling at the nanoparticle/substrate interface on the acoustic vibrations of the nano-objects is discussed. Moreover, by changing the environment of the nanoring, we provide a clear evidence of the impact of the surrounding medium on the damping of the acoustic vibrations. Such results are reported here for the first time on individual nanoparticles. This work points out a new sensing method based on the sensitivity of the acoustic vibration damping to the surrounding medium.

10.
Nano Lett ; 11(2): 431-7, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21214216

RESUMO

This work is devoted to the fundamental understanding of the interaction between acoustic vibrations and surface plasmons in metallic nano-objects. The acoustoplasmonic properties of coupled spherical gold nanoparticles and nanodisk trimers are investigated experimentally by optical transmission measurements and resonant Raman scattering experiments. For excitation close to resonance with the localized surface plasmons of the nanodisk trimers, we are able to detect several intense Raman bands generated by the spherical gold nanoparticles. On the basis of both vibrational dynamics calculations and Raman selection rules, the measured Raman bands are assigned to fundamental and overtones of the quadrupolar and breathing vibration modes of the spherical gold nanoparticles. Simulations of the electric near-field intensity maps performed at the Raman probe wavelengths showed strong localization of the optical energy in the vicinity of the nanodisk trimers, thus corroborating the role of the interaction between the acoustic vibrations of the spherical nanoparticles and the surface plasmons of the nanodisk trimers. Acoustic phonons surface enhanced Raman scattering is here demonstrated for the first time for such coupled plasmonic systems. This work paves the way to surface plasmon engineering for sensing the vibrational properties of nanoparticles.


Assuntos
Acústica , Ouro/química , Modelos Químicos , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Espalhamento de Radiação
11.
J Am Chem Soc ; 133(22): 8506-9, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21563806

RESUMO

We report a facile chemical synthesis of well-defined gold nanocrosses through anisotropic growth along both <110> and <001>, whereas gold nanorods grow only along either <110> or <001>. The multiple branching was achieved by breaking the face-centered-cubic lattice symmetry of gold through copper-induced formation of single or double twins, and the resulting gold nanocrosses exhibited pronounced near-IR absorption with a great extension to the mid-IR region. As studied by discrete dipole approximation (DDA) simulations, the entire nanocross gets excited even when one of the branches is exposed to incident light. The above properties make them useful as octopus antennas for capturing near-IR light for effective photothermal destruction of cells. The cell damage process was analyzed using the Arrhenius model, and its intrinsic thermodynamic characteristics were determined quantitatively. Besides effective photothermal treatment and two-photon luminescence imaging, the near- and mid-IR-absorbing gold nanocrosses may also find applications in IR sensing, thermal imaging, telecommunications, and the like.


Assuntos
Ouro/química , Luz , Nanotubos/química , Temperatura , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Espectrofotometria Infravermelho , Ressonância de Plasmônio de Superfície
12.
Opt Express ; 19(6): 5587-95, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445198

RESUMO

Using numerical simulations, we demonstrate that fine shape details of gold nanoring-disks are responsible for significant modifications of their localized surface plasmon properties. The numerical results are supported by optical transmission measurements and by atomic force microscopy. In particular, we found that, depending on the ring wall sharpness, the spectral shift of the ring-like localized surface plasmon resonance can be as large as few hundred nanometers. These results shed the light on the strong sensitivity of the surface plasmon properties to very small deviations of the ring and disk shapes from the ideally flat surfaces and sharp edges. This effect is particularly important for tailoring the surface plasmon properties of metallic nanostructures presenting edges and wedges for applications in bio- and chemical sensing and for enhancement of light scattering.

13.
Opt Express ; 18(21): 22271-82, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20941128

RESUMO

In this work we report on the observation of surface plasmon properties of periodic arrays of gold nanoring trimers fabricated by electron beam lithography. It is shown that the localized surface plasmon resonances of such gold ring trimers occur in the infrared spectral region and are strongly influenced by the nanoring geometry and their relative positions. Based on numerical simulations of the optical extinction spectra and of the electric near-field intensity maps, the resonances are assigned to surface plasmon states arising from the strong intra-trimer electromagnetic interaction. We show that the nanoring trimer configuration allows for generating infrared surface plasmon resonances associated with strongly localized electromagnetic energy, thus providing plasmonic nanoresonators well-suited for sensing and surface enhanced near-infrared Raman spectroscopy.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Algoritmos , Simulação por Computador , Elétrons , Microscopia Eletrônica de Varredura/métodos , Modelos Teóricos , Nanotecnologia/métodos , Radiação , Análise Espectral Raman/métodos , Propriedades de Superfície
14.
Nanotechnology ; 21(30): 305501, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20603533

RESUMO

Fabrication and surface plasmon properties of gold nanostructures consisting of periodic arrays of disk trimers are reported. Using electron beam lithography, disk diameters as small as 96 nm and gaps between disks as narrow as 10 nm have been achieved with an unprecedented degree of control and reproducibility. The disk trimers exhibit intense visible and infrared surface plasmon resonances which are studied as a function of the disk diameter and of the pitch between trimers. Based on simulations of the optical extinction spectra and of the electric near-field intensity maps, the resonances are assigned to a single trimer response and to collective surface plasmon excitations involving electromagnetic interaction between the trimers. The sensing properties of the disk trimers are investigated using various coating media. The reported results demonstrate the possible use of gold disk trimers for dual wavelength chemical sensing.

15.
Nano Lett ; 9(11): 3732-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19739596

RESUMO

We investigate the acousto-plasmonic dynamics of metallic nano-objects by means of resonant Raman scattering and time-resolved femtosecond transient absorption. We observe an unexpectedly strong acoustic vibration band in the Raman scattering of silver nanocolumns, usually not found in isolated nano-objects. The frequency and the polarization of this unexpected Raman band allow us to assign it to breathing-like acoustic vibration modes. On the basis of full electromagnetic near-field calculations coupled to the elasticity theory, we introduce a new concept of "acousto-plasmonic hot spots" which arise here because of the indented shape of the nanocolumns. These hot spots combine both highly localized surface plasmons and strong shape deformation by the acoustic vibrations at specific sites of the nano-objects. We show that the coupling between breathing-like acoustic vibrations and surface plasmons at the "acousto-plasmonic hot spots" is strongly enhanced, turning almost silent vibration modes into efficient Raman scatterers.

16.
IEEE Trans Nanobioscience ; 15(5): 412-417, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27071186

RESUMO

The Discosoma recombinant red fluorescent (DsRed) protein is the latest member of the family of fluorescent proteins. It holds great promise for applications in biotechnology and cell biology. However, before being used for rational engineering, knowledge on the behavior of DsRed and the underlying mechanisms relating its structural stability and adsorption properties on solid surfaces is highly demanded. The physico-chemical analysis performed in this study reveals that the interaction of DsRed with SiO2 surfaces does not lead to complete protein denaturation after adsorption and dehydration. Nevertheless, the photoluminescence emission of dehydrated DsRed small droplets was found to be slightly red-shifted, peaking at 590 nm. The measured contact angles of droplets containing different concentration of DsRed proteins determine the interaction as hydrophilic one, however with larger contact angles for larger DsRed concentrations. The DsRed protein behavior is not pH-dependent with respect of the contact angle measurements, in agreement with previously reported studies.


Assuntos
Proteínas Luminescentes/química , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Proteína Vermelha Fluorescente
17.
ACS Nano ; 8(12): 12682-9, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25469686

RESUMO

We report on the fabrication of monolayer MoS2-coated gold nanoantennas combining chemical vapor deposition, e-beam lithography surface patterning, and a soft lift-off/transfer technique. The optical properties of these hybrid plasmonic-excitonic nanostructures are investigated using spatially resolved photoluminescence spectroscopy. Off- and in-resonance plasmonic pumping of the MoS2 excitonic luminescence showed distinct behaviors. For plasmonically mediated pumping, we found a significant enhancement (∼65%) of the photoluminescence intensity, clear evidence that the optical properties of the MoS2 monolayer are strongly influenced by the nanoantenna surface plasmons. In addition, a systematic photoluminescence broadening and red-shift in nanoantenna locations is observed which is interpreted in terms of plasmonic enhanced optical absorption and subsequent heating of the MoS2 monolayers. Using a temperature calibration procedure based on photoluminescence spectral characteristics, we were able to estimate the local temperature changes. We found that the plasmonically induced MoS2 temperature increase is nearly four times larger than in the MoS2 reference temperatures. This study shines light on the plasmonic-excitonic interaction in these hybrid metal/semiconductor nanostructures and provides a unique approach for the engineering of optoelectronic devices based on the light-to-current conversion.

18.
Sci Rep ; 3: 1312, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23425921

RESUMO

Fabrication and synthesis of plasmonic structures is rapidly moving towards sub-nanometer accuracy in control over shape and inter-particle distance. This holds the promise for developing device components based on novel, non-classical electro-optical effects. Monochromated electron energy-loss spectroscopy (EELS) has in recent years demonstrated its value as a qualitative experimental technique in nano-optics and plasmonic due to its unprecedented spatial resolution. Here, we demonstrate that EELS can also be used quantitatively, to probe surface plasmon kinetics and damping in single nanostructures. Using this approach, we present from a large (>50) series of individual gold nanoparticles the plasmon Quality factors and the plasmon Dephasing times, as a function of energy/frequency. It is shown that the measured general trend applies to regular particle shapes (rods, spheres) as well as irregular shapes (dendritic, branched morphologies). The combination of direct sub-nanometer imaging with EELS-based plasmon damping analysis launches quantitative nanoplasmonics research into the sub-nanometer realm.

19.
Adv Mater ; 24(17): 2310-4, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22467121

RESUMO

The first use of non-centrosymmetric Janus Au-TiO(2) photocatalysts in efficient, plasmon-enhanced visible-light hydrogen generation is demonstrated. The intense localization of plasmonic near-fields close to the Au-TiO(2) interface, coupled with optical transitions involving localized electronic states in amorphous TiO(2) brings about enhanced optical absorption and the generation of electron-hole pairs for photocatalysis.


Assuntos
Ouro/química , Hidrogênio/química , Luz , Titânio/química , Catálise , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície
20.
Nano Lett ; 6(9): 2037-42, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16968022

RESUMO

Optical and vibrational properties of novel self-assembled silver nanocolumns are studied experimentally and theoretically. The split of the surface plasmon resonance into transverse and longitudinal modes verifies the one-dimensional character of the nanocolumns. In this work, we have identified the acoustic vibration modes of the nanocolumns using Raman scattering, as spheroid-like modes (l = 2, m = +/-2) involving vibrations of the nanocolumns along their minor axes and the existence of surface plasmon-vibration coupling mechanisms.


Assuntos
Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Nanotubos/química , Nanotubos/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Teste de Materiais , Nanotubos/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA