Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 132(5)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709916

RESUMO

During cytokinesis, fission yeast coordinates actomyosin ring constriction with septum ingression, resulting in concentric furrow formation by a poorly defined mechanism. We report that Schizosaccharomyces pombe cells lacking the Cdc42 activator Gef1, combined with an activated allele of the formin, Cdc12, display non-concentric furrowing. Non-concentrically furrowing cells display uneven distribution of the scaffold Cdc15 along the ring. This suggests that, after ring assembly, uniform Cdc15 distribution along the ring enables proper furrow formation. We find that, after assembly, Cdc15 is recruited to the ring in an Arp2/3 complex-dependent manner and is decreased in the activated cdc12 mutant. Cdc15 at cortical endocytic patches shows increased levels and extended lifetimes in gef1 and activated cdc12 mutants. We hypothesize endocytosis helps recruit Cdc15 to assembled rings; uneven Cdc15 distribution at the ring occurs when endocytic patches contain increased Cdc15 levels and the patch-association rate is slow. Based on this, we developed a mathematical model that captures experimentally observed Cdc15 distributions along the ring. We propose that, at the ring, Gef1 and endocytic events promote uniform Cdc15 organization to enable proper septum ingression and concentric furrow formation.


Assuntos
Actomiosina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Citocinese , Proteínas do Citoesqueleto/genética , Endocitose , Proteínas de Ligação ao GTP/metabolismo , Modelos Teóricos , Mutação/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas de Schizosaccharomyces pombe/genética
2.
J Chem Phys ; 144(1): 015102, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26747820

RESUMO

Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.


Assuntos
Difusão , Retroalimentação Fisiológica , Simulação de Dinâmica Molecular , Proteínas/química , Cinética , Método de Monte Carlo , Processos Estocásticos
3.
Phys Rev E ; 99(2-1): 022406, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934265

RESUMO

Molecular motors facilitate intracellular transport through a combination of passive motion in the cytoplasm and active transport along cytoskeletal filaments. Although the motion of motors on individual filaments is often well characterized, it remains a challenge to understand their transport on networks of filaments. Here we use computer simulations of a stochastic jump process to determine first-passage times (FPTs) of a molecular motor traversing an interval containing randomly distributed filaments of fixed length. We characterize the mean first-passage time (MFPT) as a function of the number and length of filaments. Intervals containing moderate numbers of long filaments lead to the largest MFPTs with the largest relative standard deviation; in this regime, some filament configurations lead to anomalously large FPTs due to spatial regions where motors become trapped for long times. For specific filament configurations, we systematically reverse the directionality of single filaments and determine the MFPT of the perturbed configuration. Surprisingly, altering a single filament can dramatically impact the MFPT, and filaments leading to the largest changes are commonly found in different regions than the traps. We conclude by analyzing the mean square displacement of motors in unconfined systems with a large density of filaments and show that they behave diffusively at times substantially less than the MFPT to traverse the interval. However, the effective diffusion coefficient underestimates the MFPT across the bounded interval, emphasizing the importance of local configurations of filaments on first-passage properties.


Assuntos
Citoesqueleto/metabolismo , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA