RESUMO
This study reports a thermostable glucose-stimulated ß-glucosidase, BglY442, from hot-spring metagenomic data that was cloned and expressed in Escherichia coli BL21 (DE3). The molecular mass of recombinant BglY442 was 69.9 kDa and was used in the production of gardenia blue. The recombinant BglY442 showed its maximum activity at pH 6.0 and 75 °C, maintained 50 % activity at 70 °C for 36 h, presented over 90 % activity in a broad pH range and a wide range of pH stability. Moreover, BglY442 exhibited excellent tolerance toward methanol and ethanol. The specific activity of BglY442 was 235 U/mg at pH 6.0 and 75 °C with 10 mM pNPG as substrate. BglY442 activity increased by over fourfold with 2 M glucose or xylose. Specifically, the enzyme kinetics of BglY442 seem to be non-Michaelis-Menten kinetics or atypical kinetics because the Michaelis-Menten saturation kinetics were not observed with pNPG, oNPG or geniposide as substrates. Under optimum conditions, geniposide was dehydrated by BglY442 and reacted with nine amino acids respectively by the one-pot method. Only the Arg or Met derived pigments showed bright blue, and these two pigments had similar ultraviolet absorption spectra. The OD590 nm of GB was detected to be 1.06 after 24 h with the addition of Arg and 1.61 after 36 h with the addition of Met. The intermediate was elucidated and identified as ginipin. Molecular docking analysis indicated that the enzyme had a similar catalytic mechanism to the reported GH1 Bgls. BglY442 exhibited potential for gardenia blue production by the one-pot method. With outstanding thermostability and glucose tolerance, BglY442 should be considered a potential ß-glucosidase in biotechnology applications.
Assuntos
Gardenia , Glucose , Iridoides , Glucose/farmacologia , Proteínas Recombinantes/metabolismo , beta-Glucosidase/metabolismo , Metagenoma , Simulação de Acoplamento Molecular , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Especificidade por Substrato , Temperatura , CinéticaRESUMO
Gastrodia elata needs to establish a symbiotic relationship with Armillaria strains to obtain nutrients and energy. However, the signaling cross talk between G. elata and Armillaria strains is still unclear. During our experiment, we found that the vegetative mycelium of Armillaria gallica 012m grew significantly better in the media containing gibberellic acid (GA3) than the blank control group (BK). To explore the response mechanism, we performed an RNA-sequencing experiment to profile the transcriptome changes of A. gallica 012m cultured in the medium with exogenous GA3. The transcriptome-guided differential expression genes (DEGs) analysis of GA3 and BK showed that a total of 1309 genes were differentially expressed, including 361 upregulated genes and 948 downregulated genes. Some of those DEGs correlated with the biological process, including positive regulation of chromosome segregation, mitotic metaphase/anaphase transition, attachment of mitotic spindle microtubules to kinetochore, mitotic cytokinesis, and nuclear division. These analyses explained that GA3 actively promoted the growth of A. gallica to some extent. Further analysis of protein domain features showed that the deduced polypeptide contained 41 candidate genes of GA receptor, and 27 of them were expressed in our samples. We speculate that GA receptors exist in A. gallica 012m. Comparative studies of proteins showed that the postulated GA receptor domains of A. gallica 012m have a higher homologous correlation with fungi than others based on cluster analysis.
Assuntos
Armillaria , Armillaria/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , MicélioRESUMO
Gastrodia elata is an achlorophyllous and fully mycoheterotrophic orchid which obtains carbon and other nutrients from Armillaria species in its life cycle. Many researchers suggested that plant hormones, as signing molecules, play a central role in the plant-fungi interaction. In the process of Armillaria gallica 012 m cultivation, both exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) distinctly stimulated the growth of mycelia in solid media. The differential expression genes (DEGs) of A. gallica 012 m with IAA versus blank control (BK) and IBA versus BK were investigated. The results showed that more than 80% of DEGs of the IAA group were coincident with the DEGs of the IBA group, and more than half of upregulated DEGs and most of the downregulated DEGs of the IAA group coincided with those DEGs of the IBA group. Above research implied that A. gallica 012 m could perceive IAA and IBA, and possess similar responses and signaling pathways to IAA and IBA. The overlapping differential genes of the IAA group and IBA group were analyzed by GO term, and the results showed that several DEGs identified were related to biological processes including positive regulation of the biological process and biological process. The downregulated NmrA-like and FKBP_C genes might be benefit to the growth of mycelia. Those results can explain that exiguous IAA and IBA improved the growth of A. gallica to some extent. We speculate that IAA and IBA are signaling molecules, and regulate the expression of growth-related genes of A. gallica 012 m by the same signaling pathway.
Assuntos
Armillaria , Armillaria/genética , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão GênicaRESUMO
Cytochrome P450 enzymes (CYP450s) exert mighty catalytic actions in cellular metabolism and detoxication, which play pivotal roles in cell fate determination. Preliminary data shows differential expression levels of CYP27C1, one of the "orphan P450s" in human lung cancer cell lines. Here, we study the functions of CYP27C1 in lung cancer progression and drug endurance, and explore its potential to be a diagnostic and therapeutic target for lung cancer management. Quantitative real-time PCR and immunoblot assays were conducted to estimate the transcription and protein expression level of CYP27C1 in human lung cancer cell lines, which was relatively higher in A549 and H1975 cells, but was lower in H460 cells. Stable CYP27C1-knockdown A549 and H1975 cell lines were established, in which these cells showed enhancement in cell proliferation, colony formation, and migration. In addition, aberrant IGF-1R/Akt/p53 signal transduction was also detected in stable CYP27C1-knockdown human lung cancer cells, which exhibited greater tolerance towards the treatments of anticancer agents (including vinorelbine, picropodophyllin, pacritinib, and SKLB610). This work, for the first time, reveals that CYP27C1 impacts lung cancer cell development by participating in the regulation of the IGF-1R/Akt/p53 signaling pathway, and the level of CYP27C1 plays indispensable roles in dictating the cellular sensitivity towards multiple anticancer agents.
Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The cytochrome P450s (CYP450s) include key oxidative enzymes involved in the metabolism of various carcinogens and anticancer drugs. Bioinformatic studies have demonstrated the association of CYP3A43 with liver cancer and ovarian cancer. However, the biological function of CYP3A43 in tumor progression remains unclear. To further reveal the role of CYP3A43 in tumor progression, we first analyzed the data from the UALCAN database and found that CYP3A43 was negatively correlated to the cancer staging and lymph node metastasis of lung adenocarcinoma (LUAD). We established stable CYP3A43-knockdown LUAD H1299 cell line and found that its knockdown enhanced cell proliferation, colony formation, and migration in vitro, and promoted the growth of tumor xenograft in vivo. Interestingly, when CYP3A43 was ectopically-expressed in the LUAD cell lines, decreased cell proliferation and ERK1/2 phosphorylation level were observed. Lastly, we also identified CYP3A43 co-expressed genes in LUAD from LinkedOmics database followed by GO and KEGG analyses. In conclusion, our results indicate the unprecedented role of CYP3A43 in the suppression of LUAD and provide new possibilities for targeted therapy of this life-threatening disease.
Assuntos
Adenocarcinoma de Pulmão , Hidrocarboneto de Aril Hidroxilases , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Hidrocarboneto de Aril Hidroxilases/genéticaRESUMO
Selenium (Se) acts as an essential trace element in the human body due to its unique biological functions, particularly in the oxidation-reduction system. Although several clinical trials indicated no significant benefit of Se in preventing cancer, researchers reported that some Se species exhibit superior anticancer properties. Therefore, a reassessment of the status of Se and Se compounds is necessary in order to provide clearer insights into the potentiality of Se in cancer prevention and therapy. In this review, we organize relevant forms of Se species based on the three main categories of Se-inorganic, organic, and Se-containing nanoparticles (SeNPs)-and overview their potential functions and applications in oncology. Here, we specifically focus on the SeNPs as they have tremendous potential in oncology and other fields. In general, to make better use of Se compounds in cancer prevention and therapy, extensive further study is still required to understand the underlying mechanisms of the Se compounds.
Assuntos
Neoplasias/tratamento farmacológico , Compostos de Selênio/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Humanos , Nanopartículas/uso terapêutico , Neoplasias/prevenção & controle , Espécies Reativas de Oxigênio/metabolismoRESUMO
Studying the relatively underexplored atypical MAP Kinase MAPK15 on cancer progression/patient outcomes and its potential transcriptional regulation of downstream genes would be highly valuable for the diagnosis, prognosis, and potential oncotherapy of malignant tumors such as lung adenocarcinoma (LUAD). Here, the expression of MAPK15 in LUAD was detected by immunohistochemistry and its correlation with clinical parameters such as lymph node metastasis and clinical stage was analyzed. The correlation between the prostaglandin E2 receptor EP3 subtype (EP3) and MAPK15 expression in LUAD tissues was examined, and the transcriptional regulation of EP3 and cell migration by MAPK15 in LUAD cell lines were studied using the luciferase reporter assay, immunoblot analysis, qRT-PCR, and transwell assay. We found that MAPK15 is highly expressed in LUAD with lymph node metastasis. In addition, EP3 is positively correlated with the expression of MAPK15 in LUAD tissues, and we confirmed that MAPK15 transcriptionally regulates the expression of EP3. Upon the knockdown of MAPK15, the expression of EP3 was down-regulated and the cell migration ability was decreased in vitro; similarly, the mesenteric metastasis ability of the MAPK15 knockdown cells was inhibited in in vivo animal experiments. Mechanistically, we demonstrate for the first time that MAPK15 interacts with NF-κB p50 and enters the nucleus, and NF-κB p50 binds to the EP3 promoter and transcriptionally regulates the expression of EP3. Taken together, we show that a novel atypical MAPK and NF-κB subunit interaction promotes LUAD cell migration through transcriptional regulation of EP3, and higher MAPK15 level is associated with lymph node metastasis in patients with LUAD.
RESUMO
Background: Gastrodia elata, known as a rootless, leafless, achlorophyllous and fully mycoheterotrophic orchid, needs to establish symbionts with particular Armillaria species to acquire nutrition and energy. Previous research findings had approved that ethylene (ET) played an important role in plant-fungi interaction and some receptors of ET had been discovered in microorganisms. However, the molecular mechanisms underlying the role of ET in the interaction between G. elata and Armillaria species remain unknown. Methods: Exiguous ethephon (ETH) was added to agar and liquid media to observe the morphological features of mycelium and count the biomass respectively. Mycelium cultured in liquid media with exiguous ETH (0.1 ppm, 2.0 ppm, 5.0 ppm) were chosen to perform whole-transcriptome profiling through the RNA-seq technology (Illumina NGS sequencing). The DEGs of growth-related genes and candidate ET receptor domains were predicted on SMART. Results: ETH-0.1 ppm and ETH-2 ppm could significantly improve the mycelium growth of A. gallica 012m, while ETH-5 ppm inhibited the mycelium growth in both solid and liquid media. The number of up-regulated or down-regulated genes increased along with the concentrations of ETH. The growth of mycelia might benefit from the up-regulated expression of Pyr_redox (Pyridine nucleotide-disulphide oxidoreductase), GAL4 (C6 zinc finger) and HMG (High Mobility Group) genes in the ETH-0.1 ppm and ETH-2 ppm. Therefore, the growth of mycelia might be impaired by the down-regulated expression of ZnF_C2H2 and ribosomal protein S4 proteins in the ETH-5 ppm. Seven ET receptor domains were predicted in A. gallica 012m. Based on cluster analysis and comparative studies of proteins, the putative ETH receptor domains of A. gallica 012m have a higher homologous correlation with fungi. Conclusions: The responses of A. gallica 012m to ETH had a concentration effect similar to the plants' responses to ET. Therefore, the number of up-regulated or down-regulated genes are increased along with the concentrations of ETH. Seven ET receptor protein domains were predicted in the genome and transcriptome of A. gallica 012m. We speculate that ETH receptors exist in A. gallica 012m and ethylene might play an important role in the plant-fungi interaction.
Assuntos
Armillaria , Transcriptoma/genética , Fungos , Perfilação da Expressão Gênica , Etilenos/farmacologiaRESUMO
PURPOSE: Acetyl-CoA Carboxylases (ACCs) are key fatty acid metabolic enzymes responsible for catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. The role of ACC1 has been associated with tumor biology, but the role of ACC2 in cancer remains largely uncharacterized. METHODS: We conducted a transcriptomic analysis using GEPIA and Oncomine to study the expression of ACC2 in different cancers. Immunohistochemistry was used to examine the expression of ACC2 in lung cancer tissue microarray, and the correlation between ACC2 expression and clinical parameters was analyzed. Following ACC2 knockdown by RNA interference in A549 and HCC827 cells, Cell Counting Kit8 and transwell assays were used to detect cell proliferation and migration. Real-time PCR was used to detect cell cycle-related genes in A549 cells. GEO dataset and KM-plotter database were used to analyze the relationship between ACC2 expression and the prognosis in lung cancer patients. RESULTS: We found that ACC2 is under-expressed in cancerous tissue and the expression of ACC2 is negatively correlated with tumor size, regional lymph-node metastases, and clinical stage of lung adenocarcinoma patients. In addition, knocking down ACC2 in A549 cells and HCC827 cells can promote cell proliferation and migration, and cell cycle-related genes MAD2L1 and CCNB2 were up-regulated after ACC2 was knockdown in A549 cells. Finally, we found that lung adenocarcinoma patients with under-expressed ACC2 have a worse prognosis. CONCLUSIONS: Our results suggest that ACC2 is a potential diagnostic and prognostic marker that negatively correlated with clinical outcomes in lung adenocarcinoma.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Acetilcoenzima A , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Adenocarcinoma de Pulmão/genética , Ácidos Graxos/metabolismo , Humanos , Neoplasias Pulmonares/genéticaRESUMO
From March 2008 to March 2009, fishes were caught from the rivers in Sanjiang, Rongan, Rongshui, Liucheng, Liuzhou and Xiangzhou counties, and their metacercarial infections were examined by the muscle compression and digestion techniques. A total of 16,204 freshwater fishes of 35 species were collected. C. sinensis metacercariae were found in 32 species of fishes with an overall infection rate of 10.5% and a mean infection intensity of 4.6 metacercariae per gram. The highest prevalence (21.5%) and intensity of infection (9.9 per gram) were found in Pseudorasbora parva, followed by Zacco platypus (17.8% and 8.9 per gram, respectively). There were significant differences in infection rate among different localities. The infection rate in Xiangzhou County (12.3%) was higher than that in Sanjiang County (9.1%) and Liuzhou City (9.7%). The infection rate was higher in summer and autumn, but lower in spring and winter. Compared with low water layer, the infection rate was higher in the upper and medium water layers. The infection rates of omnivorous and herbivorous fishes were higher than that of carnivorous fishes.
Assuntos
Clonorquíase/veterinária , Clonorchis sinensis , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Animais , China/epidemiologia , Clonorquíase/epidemiologia , Clonorquíase/parasitologia , RiosRESUMO
Cadmium (Cd) is a widespread environmental pollutant and carcinogen. Although the exact mechanisms of Cd-induced carcinogenesis remain unclear, previous acute/chronic Cd exposure studies have shown that Cd exerts its cytotoxic and carcinogenic effects through multiple mechanisms, including interference with the DNA repair system. However, the effects of post-chronic Cd exposure remain unknown. Here, we establish a unique post-chronic Cd-exposed human lung cell model (the "CR0" cells) and investigate the effects of post-chronic Cd exposure on the DNA repair system. We found that the CR0 cells retained Cd-resistant property even though it was grown in Cd-free culture medium for over a year. The CR0 cells had lasting DNA damage due to reduced DNA repair capacity and an aberrant DNA repair gene expression profile. A total of 12 DNA repair genes associated with post-chronic Cd exposure were identified, and they could be potential biomarkers for identifying post-chronic Cd exposure. Clinical database analysis suggests that some of the DNA repair genes play a role in lung cancer patients with different smoking histories. Generally, CR0 cells were more sensitive to chemotherapeutic (cisplatin, gemcitabine, and vinorelbine tartrate) and DNA damaging (H2O2) agents, which may represent a double-edged sword for cancer prevention and treatment. Overall, we demonstrated for the first time that the effects of post-chronic Cd exposure on human lung cells are long-lasting and different from that of acute and chronic exposures. Findings from our study unveiled a new perspective on Cd-induced carcinogenesis-the post-chronic exposure of Cd. This study encourages the field of post-exposure research which is crucial but has long been ignored.
Assuntos
Cádmio/toxicidade , Reparo do DNA/genética , Células Epiteliais/metabolismo , Pulmão/metabolismo , Adenocarcinoma/genética , Poluentes Atmosféricos/toxicidade , Carcinoma de Células Escamosas/genética , Linhagem Celular , Transformação Celular Neoplásica , Dano ao DNA , Bases de Dados Genéticas , Células Epiteliais/citologia , Humanos , Pulmão/citologia , Neoplasias Pulmonares/genéticaRESUMO
Extracellular signal-regulated kinase 8 (ERK8), proposed as a novel potential therapeutic target for cancer, has been implicated in cell transformation, apoptosis, the protection of genomic integrity, and autophagy. To facilitate ERK8 research, a highly specific anti-ERK8 antibody is needed. In this article, we use the Immune Epitope Database and Analysis Resource online tool to predict B-cell epitopes of human ERK8 protein, and choose a 28 aa-peptide sequence to generate the GST-ERK8(28aa) fusion protein as the antigen for developing polyclonal antibody against ERK8. The specificity and sensitivity of anti-ERK8 antibody were robustly validated by immunoblotting, immunocytochemical and immunohistochemical analyses; and we found that both the endogenous and ectopically-expressed human ERK8 proteins can be recognized by our anti-ERK8 antibody. This suggested that our characterized anti-ERK8 antibody will be a valuable tool for the elucidation of the distribution of ERK8 at cellular and histological levels. Finally, our tissue array analysis also demonstrated that the ERK8 protein was localized in both the nucleus and cytoplasm of human lung cancers.
Assuntos
Anticorpos/química , Epitopos de Linfócito B/química , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Neoplasias Pulmonares/metabolismo , Anticorpos/isolamento & purificação , Especificidade de Anticorpos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Bases de Dados Factuais , MAP Quinases Reguladas por Sinal Extracelular/análise , Humanos , Imuno-Histoquímica , SoftwareRESUMO
We studied images and histopathological features of primary esophageal malignant melanoma to explore the clinical pathological features, diagnosis, differential diagnoses, and treatment. Immunolabelling was conducted on six cases of esophageal malignant melanoma using histological and immunohistochemical techniques. Combined with the related literature, the clinical manifestations, imaging, histopathological and immunohistochemical features, treatment, and prognosis of primary esophageal malignant melanoma were observed and analyzed. The six patients with primary esophageal malignant melanoma were all male with an average age of 63.4 years. Poor food intake was observed in all patients, and the symptoms showed progressive aggravation. Endoscopic feed tube revealed dark brown and black nodular and polypoid lesions, 1/4-1/2 loop cavity. Tumor histopathology revealed the following characteristics: tumor cells arranged in nests, sheets and cords, round or polygonal, abundant and red-stained cytoplasm, melanin granules in the cytoplasm, heterogeneous nucleus sizes, centered or deviated nuclei, clearly identifiable nucleoli, and apparent pathological mitosis. The immune phenotype was as follows: tumor cells had diffuse expression of HMB45, Melan A, and S100. The cells were CK negative, and the Ki67-positive cell number was 40%-45%. Primary esophageal malignant melanoma is rare with high malignancy and poor prognosis. Immunohistochemical staining is helpful for diagnosing this tumor. The differential diagnosis includes low differentiated carcinoma, primitive neuroectodermal tumor, esophageal sarcomatoid carcinoma, esophageal lymphoma, and other tumors.
Assuntos
Neoplasias Esofágicas/patologia , Melanoma/patologia , Idoso , Biomarcadores Tumorais/análise , Biópsia , Diagnóstico Diferencial , Endossonografia , Neoplasias Esofágicas/química , Neoplasias Esofágicas/cirurgia , Esofagoscopia , Humanos , Imuno-Histoquímica , Masculino , Melanoma/química , Melanoma/cirurgia , Pessoa de Meia-Idade , Imagem Multimodal , Fenótipo , Tomografia por Emissão de Pósitrons , Valor Preditivo dos Testes , Prognóstico , Tomografia Computadorizada por Raios XRESUMO
OBJECTIVE: To investigate the clinicopathological characteristics, diagnosis and differential diagnosis, and treatment of xeroderma pigmentosum associated with keratoacanthoma in an infant. METHODS: The clinical manifestations of xeroderma pigmentosum associated with keratoacanthoma were assessed in an 18-month old boy. The morphological and histological features of the lesions were examined by light microscopy. RESULTS: An 18-month old boy was admitted with unequal size, irregularly shaped brown spots, patches and depigmentation spots on his face. A well-circumscribed hemispherical mass measuring 3 cm × 3 cm with smooth surface and brown patches was observed beneath his left lower eyelid. Light microscopic examination of the skin lesions revealed epidermal hyperkeratosis, chronic inflammatory infiltration of the superficial dermal layer, and increases in melanocytes and melanin in the basal layer. Scanning microscopy showed that the mass beneath the left lower eyelid was cup-shaped, consisting of proliferating squamous cells with a central keratin plug. The squamous epithelium was acanthotic with hypergranulosis. The adjacent epidermis formed exophytic projections resulting in a silhouette likened to lips. An associated inflammatory reaction was observed within the stroma surrounding the mass. The patient was treated with a combination of antioxidant drugs, keeping the child from light and surgical excision of the mass. No recurrence has been observed. CONCLUSIONS: Xeroderma pigmentosum of infancy is a rare disease, and association with keratoacanthoma is even rarer. This condition should be considered in the differential diagnosis of freckles, Rothmund-Thomson syndrome and porphyria.
RESUMO
Gankyrin is an important oncoprotein that is overexpressed in human hepatocellular carcinoma (HCC). However, the gradual alteration of Gankyrin in successive stages during human HCC development and the mechanism of Gankyrin-mediated hepatocarcinogenesis remain largely unknown. In this study, we evaluated the pattern and level of Gankyrin protein expression using immunohistochemistry in various liver tissues, including normal liver, chronic hepatitis, cirrhosis, adenomatous hyperplasia (AH), and HCC tissues, to analyze its clinicopathological significance. Furthermore, we stably transfected the shRNA-Gan vector, which targets human Gankyrin, into HepG2 cells to assess the role of Gankyrin in cell proliferation and tumorigenicity. The expression level of Gankyrin in the cytoplasm, nucleus, and whole cell was gradually elevated during consecutive stages of hepatocarcinogenesis. The nuclear Gankyrin level in AH was significantly higher than that in normal liver, chronic hepatitis, and cirrhotic tissues. The cytoplasmic, nuclear, and total cellular Gankyrin expression levels in HCC were significantly correlated with capsular invasion and intrahepatic metastasis. Silencing Gankyrin expression using shRNA-Gan repressed tumor cell proliferation, tumorigenicity, migration, and invasion in vitro. Our findings demonstrate that Gankyrin is aberrantly expressed beginning at the initiation stage and plays an important role in the initiation, promotion, and progression of hepatocarcinogenesis.