Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 19(5): 603-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17915691

RESUMO

We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting in January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2 x a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2 x a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.


Assuntos
Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Nitrogênio/farmacologia , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , Biodiversidade , China , Contagem de Colônia Microbiana , Fungos/crescimento & desenvolvimento , Nitratos/análise , Clima Tropical
2.
J Zhejiang Univ Sci B ; 7(5): 377-85, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16615168

RESUMO

Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broad-leaved forest; 50.61 t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. This is the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Clima Tropical , Biomassa , China , Fatores de Tempo
3.
J Environ Sci (China) ; 18(4): 752-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17078556

RESUMO

Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4(+)-N and NO3(-)-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4(+)-N in the mature forest. In contrast, inorganic N (both NH4(+)-N and NO3(-)-N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.


Assuntos
Monitoramento Ambiental/métodos , Nitratos/farmacologia , Nitrogênio/análise , Solo/análise , Árvores , Análise de Variância , Carbono/análise , Concentração de Íons de Hidrogênio , Nitrogênio/química , Fósforo/análise , Fatores de Tempo , Árvores/metabolismo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA