Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175187

RESUMO

Two new modified Bacillus thuringiensis (Bt) proteins, Cry1Da_7 and Cry1B.868, with activity against fall armyworms (FAW), Spodoptera frugiperda (J.E. Smith), were evaluated for their potential to bind new insect receptors compared to proteins currently deployed as plant-incorporated protectants (PIPs) in row crops. Results from resistant insect bioassays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that receptor utilizations of the newly modified Cry1Da_7 and Cry1B.868 proteins are distinct from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Accordingly, these two proteins target different insect proteins in FAW midgut cells and when pyramided together should provide durability in the field against this economically important pest.IMPORTANCE There is increased concern with the development of resistance to insecticidal proteins currently expressed in crop plants, especially against high-resistance-risk pests such as fall armyworm (FAW), Spodoptera frugiperda, a maize pest that already has developed resistance to Bacillus thuringiensis (Bt) proteins such as Cry1F. Lepidopteran-specific proteins that bind new insect receptors will be critical in managing current Cry1F-resistant FAW and delaying future resistance development. Results from resistant insect assays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that target receptors of the Cry1Da_7 and Cry1B.868 proteins are different from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Therefore, pyramiding these two new proteins in maize will provide durable control of this economically important pest in production agriculture.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Ligação Proteica , Spodoptera/genética , Zea mays/parasitologia
3.
J Invertebr Pathol ; 142: 50-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235983

RESUMO

The need for sustainable insect pest control is driving the investigation and discovery of insecticidal proteins outside of the typical 3-domain Cry protein family from Bacillus thuringiensis (Bt). Examples include Cry35 and Cry51 that belong to protein families (Toxin_10, ETX_MTX2) sharing a common ß-pore forming structure and function with known mammalian toxins such as epsilon toxin (ETX). Although ß-pore forming proteins are related to mammalian toxins, there are key differences in sequence and structure that lead to organism specificity that is useful in the weight-of-evidence approach for safety assessment. Despite low overall amino acid sequence identity among ETX_MTX2 proteins, sequence and structural similarities are found in the tail region responsible for the shared oligomerization and pore formation functions (causing the "relatedness"). Conversely, most of the sequence and structural diversity is located in the head region that is likely responsible for differential receptor binding and target species specificity (e.g., insecticidal vs. mammalian). Therefore, inclusion of a domain-based protein characterization approach that includes bioinformatic and functional comparisons of conserved and diverse domains will enhance the overall weight of evidence safety assessment of proteins including recently reported Cry51 protein variants (Cry51Aa1, Cry51Aa2, and Cry51Aa2.834_16).


Assuntos
Biologia Computacional/métodos , Endotoxinas/classificação , Inseticidas/classificação , Modelos Moleculares , Controle Biológico de Vetores/métodos , Sequência de Aminoácidos , Animais , Endotoxinas/química , Endotoxinas/genética , Inseticidas/química , Inseticidas/metabolismo , Relação Estrutura-Atividade
4.
Transgenic Res ; 22(6): 1207-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23748931

RESUMO

The sequence specificity of the endogenous RNA interference pathway allows targeted suppression of genes essential for insect survival and enables the development of durable and efficacious insecticidal products having a low likelihood to adversely impact non-target organisms. The spectrum of insecticidal activity of a 240 nucleotide (nt) dsRNA targeting the Snf7 ortholog in Western Corn Rootworm (WCR; Diabrotica virgifera virgifera) was characterized by selecting and testing insects based upon their phylogenetic relatedness to WCR. Insect species, representing 10 families and 4 Orders, were evaluated in subchronic or chronic diet bioassays that measured potential lethal and sublethal effects. When a specific species could not be tested in diet bioassays, the ortholog to the WCR Snf7 gene (DvSnf7) was cloned and corresponding dsRNAs were tested against WCR and Colorado potato beetle (Leptinotarsa decemlineata); model systems known to be sensitive to ingested dsRNA. Bioassay results demonstrate that the spectrum of activity for DvSnf7 is narrow and activity is only evident in a subset of beetles within the Galerucinae subfamily of Chrysomelidae (>90% identity with WCR Snf7 240 nt). This approach allowed for evaluating the relationship between minimum shared nt sequence length and activity. A shared sequence length of ≥ 21 nt was required for efficacy against WCR (containing 221 potential 21-nt matches) and all active orthologs contained at least three 21 nt matches. These results also suggest that WCR resistance to DvSnf7 dsRNA due to single nucleotide polymorphisms in the target sequence of 240 nt is highly unlikely.


Assuntos
Controle de Insetos/métodos , Proteínas de Insetos/antagonistas & inibidores , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla/genética , Animais , Besouros/efeitos dos fármacos , Besouros/genética , Besouros/patogenicidade , Endotoxinas/antagonistas & inibidores , Endotoxinas/genética , Proteínas de Insetos/genética , Larva/genética , Interferência de RNA , RNA de Cadeia Dupla/farmacologia , Zea mays/genética
5.
J Chem Ecol ; 39(5): 666-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23584612

RESUMO

Elemental defense is a relatively newly recognized phenomenon in which plants use elements present in their tissue to reduce damage by herbivores or pathogens. In the present study, neonates of the generalist herbivore, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), were fed artificial diets amended with varying concentrations of Co, Cu, Ni, and Zn that are hyperaccumulated by plants to determine minimum lethal concentrations (MLC) and minimum sublethal concentrations (MSC) for each metal. MLC values (dry mass) for Co (45 µg/g), Ni (230 µg/g), and Zn (280 µg/g) were below published minimum hyperaccumulator levels. MSC levels (dry mass) for Co (15 µg/g), Ni (140 µg/g), and Zn (200 µg/g) were at concentrations lower than published minimum accumulator levels. Furthermore, both MLC and MSC values for Zn were within normal tissue concentrations. These results indicate that elemental defense for Co, Ni, and Zn may be effective at concentrations lower than hyperaccumulator levels and so may be more widespread than previously believed.


Assuntos
Metais Pesados/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Larva/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais
6.
PLoS One ; 18(7): e0288372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428757

RESUMO

Field-evolved resistance of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, to Bacillus thuringiensis Berliner (Bt) proteins Cry3Bb1 and Cry34/35Ab1 (now classified as Gpp34Ab1/Tpp35Ab1) expressed in the pyramid SmartStax® has been documented in areas of the United States (U.S.) Corn Belt. SmartStax® PRO is a recently registered rootworm-active pyramid containing the same Bt proteins expressed in SmartStax® plus DvSnf7 dsRNA. Little to no published data is available comparing efficacy of the technologies or potential effects of dietary exposure on adult WCR fitness. Therefore, experiments were conducted to compare effects of adult WCR dietary exposure to SmartStax® and SmartStax® PRO on life history parameters and efficacy of the technologies in the field with both Bt-susceptible and Bt-resistant WCR populations. WCR life history parameters evaluated included adult longevity, head capsule width, egg production, and egg viability. Results of small-plot field trials indicated that both technologies provided a high level of root protection when a Bt-susceptible WCR population was present. Root protection was reduced on SmartStax® but maintained on SmartStax® PRO when WCR Bt resistance occurred. Lifetime egg production was the key life history parameter that was significantly reduced when either Bt-susceptible or Bt-resistant adult WCR were fed SmartStax® or SmartStax® PRO diet. A potential fitness advantage was apparent as egg production was significantly higher in the Bt-resistant than Bt-susceptible population. The similar response by the Bt-susceptible WCR population to SmartStax® and SmartStax® PRO indicates that results were caused by sublethal dietary exposure to Bt proteins. Adult size (males < females) and egg viability (high: >95%) were not significantly different among treatments but longevity results were inconsistent between years. Collectively, the field efficacy and life history parameter data expand existing knowledge of SmartStax® and SmartStax® PRO technologies, which will inform practical WCR resistance management programs.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Larva/genética , Zea mays/genética , Resistência a Inseticidas/genética , Proteínas de Bactérias/genética , Endotoxinas/farmacologia , Plantas Geneticamente Modificadas , Besouros/fisiologia , Bacillus thuringiensis/genética , Controle Biológico de Vetores
7.
Appl Environ Microbiol ; 78(16): 5690-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685140

RESUMO

Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Lepidópteros/efeitos dos fármacos , Lepidópteros/enzimologia , Animais , Toxinas de Bacillus thuringiensis , Trato Gastrointestinal/enzimologia , Larva/efeitos dos fármacos , Larva/enzimologia , Ligação Proteica
9.
PLoS One ; 17(5): e0268902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613094

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is an economically important pest of field corn (Zea mays L.) across the United States (U.S.) Corn Belt. Repeated use of transgenic hybrids expressing Bacillus thuringiensis (Bt) proteins has selected for field-evolved resistance to all current rootworm-active Bt proteins. The newest product available for WCR management is SmartStax® PRO, a rootworm-active pyramid containing Cry3Bb1, Cry34/35Ab1 [now reclassified as Gpp34Ab1/Tpp35Ab1] and a new mode of action, DvSnf7 dsRNA. Understanding the fitness of adult WCR after dietary exposure to SmartStax® PRO will identify potential impacts on WCR population dynamics and inform efforts to optimize resistance management strategies. Therefore, the objective of the present study was to characterize the effect of SmartStax® PRO dietary exposure on WCR life history traits. Adult WCR were collected during 2018 and 2019 from emergence tents placed over replicated field plots of SmartStax® PRO or non-rootworm Bt corn at a site with a history of rootworm-Bt trait use and suspected resistance to Cry3Bb1 and Cry34/35Ab1. Adult survival was reduced by 97.1-99.7% in SmartStax® PRO plots relative to the non-rootworm Bt corn plots during the study. Individual male/female pairs were fed different diets of ear tissue to simulate lifetime or adult exposure. Life history parameters measured included adult longevity, adult head capsule width, lifetime female egg production, and egg viability. Results indicate that lifetime or adult exposure to SmartStax® PRO significantly reduced adult longevity and lifetime egg production. Larval exposure to SmartStax® PRO significantly reduced WCR adult size. Results from this study collectively suggest that SmartStax® PRO may negatively impact WCR life history traits, which may lead to reduced population growth when deployed in an area with WCR resistance to Bt traits.


Assuntos
Bacillus thuringiensis , Besouros , Características de História de Vida , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Besouros/genética , Exposição Dietética , Endotoxinas/genética , Feminino , Resistência a Inseticidas/genética , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética
10.
PLoS One ; 17(9): e0274204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074780

RESUMO

The recently discovered insecticidal protein Mpp75Aa1.1 from Brevibacillus laterosporus is a member of the ETX_MTX family of beta-pore forming proteins (ß-PFPs) expressed in genetically modified (GM) maize to control western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). In this manuscript, bioinformatic analysis establishes that although Mpp75Aa1.1 shares varying degrees of similarity to members of the ETX_MTX2 protein family, it is unlikely to have any allergenic, toxic, or otherwise adverse biological effects. The safety of Mpp75Aa1.1 is further supported by a weight of evidence approach including evaluation of the history of safe use (HOSU) of ETX_MTX2 proteins and Breviballus laterosporus. Comparisons between purified Mpp75Aa1.1 protein and a poly-histidine-tagged (His-tagged) variant of the Mpp75Aa1.1 protein demonstrate that both forms of the protein are heat labile at temperatures at or above 55°C, degraded by gastrointestinal proteases within 0.5 min, and have no adverse effects in acute mouse oral toxicity studies at a dose level of 1920 or 2120 mg/kg body weight. These results support the use of His-tagged proteins as suitable surrogates for assessing the safety of their non-tagged parent proteins. Taken together, we report that Mpp75Aa1.1 is the first ETX-MTX2 insecticidal protein from B. laterosporus and displays a similar safety profile as typical Cry proteins from Bacillus thuringiensis.


Assuntos
Bacillus thuringiensis , Besouros , Inseticidas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Brevibacillus , Besouros/genética , Endotoxinas/metabolismo , Inseticidas/farmacologia , Larva/metabolismo , Camundongos , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética , Zea mays/metabolismo
11.
PLoS One ; 16(6): e0249150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138865

RESUMO

Two new chimeric Bacillus thuringiensis (Bt) proteins, Cry1A.2 and Cry1B.2, were constructed using specific domains, which provide insecticidal activity against key lepidopteran soybean pests while minimizing receptor overlaps between themselves, current, and soon to be commercialized plant incorporated protectants (PIP's) in soybean. Results from insect diet bioassays demonstrate that the recombinant Cry1A.2 and Cry1B.2 are toxic to soybean looper (SBL) Chrysodeixis includens Walker, velvetbean caterpillar (VBC) Anticarsia gemmatalis Hubner, southern armyworm (SAW) Spodoptera eridania, and black armyworm (BLAW) Spodoptera cosmioides with LC50 values < 3,448 ng/cm2. Cry1B.2 is of moderate activity with significant mortality and stunting at > 3,448 ng/cm2, while Cry1A.2 lacks toxicity against old-world bollworm (OWB) Helicoverpa armigera. Results from disabled insecticidal protein (DIP) bioassays suggest that receptor utilization of Cry1A.2 and Cry1B.2 proteins are distinct from each other and from current, and yet to be commercially available, Bt proteins in soy such as Cry1Ac, Cry1A.105, Cry1F.842, Cry2Ab2 and Vip3A. However, as Cry1A.2 contains a domain common to at least one commercial soybean Bt protein, resistance to this common domain in a current commercial soybean Bt protein could possibly confer at least partial cross resistance to Cry1A2. Therefore, Cry1A.2 and Cry1B.2 should provide two new tools for controlling many of the major soybean insect pests described above.


Assuntos
Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/genética , Bacillus thuringiensis/genética , Glycine max , Lepidópteros/fisiologia , Controle Biológico de Vetores , Animais , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
12.
J Econ Entomol ; 103(4): 1493-502, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20857765

RESUMO

"Sweetpotato weevils" Cylas puncticollis (Boheman) and Cylas brunneus F. (Coleoptera: Brentidae) are the most important biological threat to sweetpotato, Ipomoea batatas L. (Lam), productivity in sub-Saharan Africa. Sweetpotato weevil control is difficult due to their cryptic feeding behavior. Expression of Cylas-active Bacillus thuringiensis (Bt) Cry proteins in sweetpotato could provide an effective control strategy. Unfortunately, Bt Cry proteins with relatively high toxicity against Cylas spp. have not been identified, partly because no published methodology for screening Bt Cry proteins against Cylas spp. in artificial diet exists. Therefore, the initial aim of this study was to develop an artificial diet for conducting bioassays with Cylas spp. and then to determine Bt Cry protein efficacy against C. puncticollis and C. brunneus by using this artificial diet. Five diets varying in their composition were evaluated. The highest survival rates for sweetpotato weevil larvae were observed for diet E that contained the highest amount of sweetpotato powder and supported weevil development from first instar to adulthood, similar to sweetpotato storage roots. Seven coleopteran-active Bt Cry proteins were incorporated into diet E and toxicity data were generated against neonate C. puncticollis and second-instar C. brunneus. All Bt Cry proteins tested had toxicity greater than the untreated control. Cry7Aa1, ET33/34, and Cry3Ca1 had LC50 values below 1 microg/g diet against both species. This study demonstrates the feasibility of using an artificial diet bioassay for screening Bt Cry proteins against sweetpotato weevil larvae and identifies candidate Bt Cry proteins for use in transforming sweetpotato varieties potentially conferring field resistance against these pests.


Assuntos
Proteínas de Bactérias/classificação , Proteínas de Bactérias/farmacologia , Besouros/efeitos dos fármacos , Endotoxinas/classificação , Endotoxinas/farmacologia , Proteínas Hemolisinas/classificação , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Dieta , Inseticidas/classificação
13.
J Chem Ecol ; 35(7): 785-95, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19588197

RESUMO

Larvae of the bollworm Helicoverpa zea (Boddie) show some tolerance to Bacillus thuringiensis (Bt) Cry1Ac, and can survive on Cry1Ac-expressing Bt cotton, which should increase resistance development concerns. However, field-evolved resistance has not yet been observed. In a previous study, a population of H. zea was selected for stable resistance to Cry1Ac toxin. In the present study, we determined in laboratory bioassays if larvae of the Cry1Ac toxin-resistant H. zea population show higher survival rates on field-cultivated Bt cotton squares (= flower buds) collected prebloom-bloom than susceptible H. zea. Our results show that Cry1Ac toxin-resistant H. zea cannot complete larval development on Cry1Ac-expressing Bt cotton, despite being more than 150-fold resistant to Cry1Ac toxin and able to survive until pupation on Cry1Ac toxin concentrations greater than present in Bt cotton squares. Since mortality observed for Cry1Ac-resistant H. zea on Bt cotton was higher than expected, we investigated whether Cry1Ac interacts with gossypol and or other compounds offered with cotton powder in artificial diet. Diet incorporation bioassays were conducted with Cry1Ac toxin alone, and with gossypol and 4% cotton powder in the presence and absence of Cry1Ac. Cry1Ac toxin was significantly more lethal to susceptible H. zea than to resistant H. zea, but no difference in susceptibility to gossypol was observed between strains. However, combinations of Cry1Ac with gossypol or cotton powder were synergistic against resistant, but not against susceptible H. zea. Gossypol concentrations in individual larvae showed no significant differences between insect strains, or between larvae fed gossypol alone vs. those fed gossypol plus Cry1Ac. These results may help explain the inability of Cry1Ac-resistant H. zea to complete development on Bt cotton, and the absence of field-evolved resistance to Bt cotton by this pest.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Gossypium/química , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Lepidópteros/efeitos dos fármacos , Animais , Toxinas de Bacillus thuringiensis , Flores/química , Gossipol/farmacologia , Resistência a Inseticidas , Larva/efeitos dos fármacos , Controle Biológico de Vetores , Sinergistas de Praguicidas
14.
Appl Environ Microbiol ; 74(1): 130-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17981939

RESUMO

Standardization of toxin preparations derived from Bacillus thuringiensis (Berliner) used in laboratory bioassays is critical for accurately assessing possible changes in the susceptibility of field populations of target pests. Different methods were evaluated to quantify Cry1Ab, the toxin expressed by 80% of the commercially available transgenic maize that targets the European corn borer, Ostrinia nubilalis (Hübner). We compared three methods of quantification on three different toxin preparations from independent sources: enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry (SDS-PAGE/densitometry), and the Bradford assay for total protein. The results were compared to those obtained by immunoblot analysis and with the results of toxin bioassays against susceptible laboratory colonies of O. nubilalis. The Bradford method resulted in statistically higher estimates than either ELISA or SDS-PAGE/densitometry but also provided the lowest coefficients of variation (CVs) for estimates of the Cry1Ab concentration (from 2.4 to 5.4%). The CV of estimates obtained by ELISA ranged from 12.8 to 26.5%, whereas the CV of estimates obtained by SDS-PAGE/densitometry ranged from 0.2 to 15.4%. We standardized toxin concentration by using SDS-PAGE/densitometry, which is the only method specific for the 65-kDa Cry1Ab protein and is not confounded by impurities detected by ELISA and Bradford assay for total protein. Bioassays with standardized Cry1Ab preparations based on SDS-PAGE/densitometry showed no significant differences in LC(50) values, although there were significant differences in growth inhibition for two of the three Cry1Ab preparations. However, the variation in larval weight caused by toxin source was only 4% of the total variation, and we conclude that standardization of Cry1Ab production and quantification by SDS-PAGE/densitometry may improve data consistency in monitoring efforts to identify changes in insect susceptibility to Cry1Ab.


Assuntos
Proteínas de Bactérias/análise , Toxinas Bacterianas/análise , Bioensaio/normas , Técnicas de Química Analítica/métodos , Endotoxinas/análise , Proteínas Hemolisinas/análise , Mariposas/efeitos dos fármacos , Análise de Variância , Animais , Toxinas de Bacillus thuringiensis , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Dose Letal Mediana , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Appl Environ Microbiol ; 74(2): 462-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18024681

RESUMO

Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.


Assuntos
Bacillus thuringiensis/genética , Gossypium/parasitologia , Resistência a Inseticidas/genética , Mariposas/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Mariposas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Ligação Proteica
16.
J Econ Entomol ; 101(4): 1421-31, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18767756

RESUMO

The heritability, stability, and fitness costs in a Cry1Ac-resistant Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) colony (AR) were measured in the laboratory. In response to selection, heritability values for AR increased in generations 4-7 and decreased in generations 11-19. AR had significantly increased pupal mortality, a male-biased sex ratio, and lower mating success compared with the unselected parental strain (SC). AR males had significantly more mating costs compared with females. AR reared on untreated diet had significantly increased fitness costs compared with rearing on Cry1Ac treated diet. AR had significantly higher larval mortality, lower larval weight, longer larval developmental period, lower pupal weight, longer pupal duration, and higher number of morphologically abnormal adults compared with SC. Due to fitness costs after 27 generations of selection as described above, AR was crossed with a new susceptible colony (SC1), resulting in AR1. After just two generations of selection, AR1 exhibited significant fitness costs in larval mortality, pupal weight and morphologically abnormal adults compared with SC1. Cry1Ac-resistance was not stable in AR in the absence of selection. This study demonstrates that fitness costs are strongly linked with selecting for Cry1Ac resistance in H. zea in the laboratory, and fitness costs remain, and in some cases, even increase after selection pressure is removed. These results support the lack of success of selecting, and maintaining Cry1Ac-resistant populations of H. zea in the laboratory, and may help explain why field-evolved resistance has yet to be observed in this major pest of Bacillus thuringiensis cotton, Gossypium hirsutum L.


Assuntos
Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Inseticidas , Mariposas/fisiologia , Seleção Genética , Animais , Toxinas de Bacillus thuringiensis , Cruzamentos Genéticos , Feminino , Fertilidade , Gossypium/parasitologia , Resistência a Inseticidas/genética , Larva/crescimento & desenvolvimento , Masculino , Pupa , Medição de Risco , Razão de Masculinidade , Comportamento Sexual Animal
17.
Pest Manag Sci ; 63(5): 440-6, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17340671

RESUMO

The cowpea bruchid (Callosobruchus maculatus F.) (Chrysomelidae: Bruchini) is a major pest of stored cowpea grain. With limited available technologies for controlling the bruchid, transgenic cowpeas with bruchid resistance genes engineered into them could become the next management tools. An investigation was made of two different sets of potential transgenic insecticidal compounds using an artificial seed system: (i) CIP-PH-BT-J and recombinant egg white avidin, and (ii) avidin and wheat alpha-amylase inhibitor. CIP-PH-BT-J (0.1%; 1000 mg kg(-1)) and recombinant egg white avidin (0.006%; 60 mg kg(-1)) incorporated separately into artificial seeds caused 98.2 and 99% larval mortality rates respectively. Combining CIP-PH-BT-J and avidin in the same artificial seed provided additional mortality compared with each factor incorporated singly; no insects survived in seeds with the combined toxins. Similarly, when avidin and wheat alpha-amylase inhibitor (alphaAI) (1%; 10 g kg(-1)) were incorporated separately into artificial seeds, this caused 99.8 and 98% mortality respectively. However, in combination, avidin and alphaAI did not increase mortality, but they did cause a significant increase in developmental time of the cowpea bruchids. These results emphasize that the joint action of potential insecticidal compounds cannot be predicted from results obtained separately for each compound, and they suggest potential transgenes for further consideration.


Assuntos
Besouros , Controle de Insetos/métodos , Inseticidas , Animais , Avidina , Bacillus thuringiensis/fisiologia , Toxinas Bacterianas , Fabaceae/genética , Fabaceae/parasitologia , Proteínas de Plantas , Plantas Geneticamente Modificadas/toxicidade , Testes de Toxicidade
18.
Environ Pollut ; 142(2): 212-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16310913

RESUMO

Studies on the effect of genetically modified Bacillus thuringiensis (Bt) crops on true soil dwelling non-target arthropods are scarce. The objective of this study was to assess the influence of a 4-week exposure to two Bt maize varieties (Cry1Ab) Cascade and MEB307 on the collembolan Protaphorura armata. For comparison three non-Bt maize varieties, Rivaldo (isogenic to Cascade), Monumental (isogenic to MEB307) and DK242, and two control diets based on baker's yeast (uncontaminated and contaminated with Bt toxin Cry1Ab) were also tested. Due to a lower C:N ratio, individuals reared on yeast performed significantly better in all of the measured endpoints than those reared on maize. P. armata performed equally well when reared on two Bt and three non-Bt maize varieties. Although there were no negative effects of Bt maize in this experiment, we recommend future studies on Bt crops to focus on species interactions in long-term, multi-species experiments.


Assuntos
Artrópodes/fisiologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Microbiologia do Solo , Zea mays/genética , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Dieta , Controle de Insetos , Estágios do Ciclo de Vida , Plantas Geneticamente Modificadas , Testes de Toxicidade Crônica , Leveduras
19.
BMC Genomics ; 6: 96, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15978131

RESUMO

BACKGROUND: Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs) from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of four APN cDNAs from Spodoptera exigua. RESULTS: Suppression Subtractive Hybridization (SSH) was used to construct cDNA libraries of genes that are up-and down-regulated in the midgut of last instar larvae of beet armyworm, S. exigua exposed to B. thuringiensis Cry1Ca toxin. Among the clones from the SSH libraries, cDNA fragments coding for two different APNs were obtained (APN2 and APN4). A similar procedure was employed to compare mRNA differences between susceptible and Cry1Ca resistant S. exigua. Among the clones from this last comparison, cDNA fragments belonging to a third APN (APN1) were detected. Using sequences obtained from the three APN cDNA fragments and degenerate primers for a fourth APN (APN3), the full length sequences of four S. exigua APN cDNAs were obtained. Northern blot analysis of expression of the four APNs showed complete absence of APN1 expression in the resistant insects, while the other three APNs showed similar expression levels in the resistant and susceptible insects. CONCLUSION: We have cloned and characterized four different midgut APN cDNAs from S. exigua. Expression analysis revealed the lack of expression of one of these APNs in the larvae of a Cry1Ca-resistant colony. Combined with previous evidence that shows the importance of APN in the mode of action of B. thuringiensis toxins, these results suggest that the lack of APN1 expression plays a role in the resistance to Cry1Ca in this S. exigua colony.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Antígenos CD13/biossíntese , Antígenos CD13/genética , Endotoxinas/farmacologia , Regulação da Expressão Gênica , Spodoptera/metabolismo , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Northern Blotting , Clonagem Molecular , Análise por Conglomerados , Primers do DNA/química , DNA Complementar/metabolismo , Regulação para Baixo , Escherichia coli/metabolismo , Expressão Gênica , Biblioteca Gênica , Proteínas Hemolisinas , Modelos Genéticos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Controle Biológico de Vetores , Filogenia , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Software , Regulação para Cima
20.
J Econ Entomol ; 98(4): 1357-68, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16156591

RESUMO

The development of pest resistance to transgenic crop plants producing insecticidal toxins from Bacillus thuringiensis Berliner (Bt) poses a major threat to their sustainable use in agriculture. "Pyramiding" two toxins with different modes of actions in the same plant is now being used to delay the evolution of resistance in the insects, but this strategy could fail if a single gene in a pest confers resistance to both toxins. The CP73 strain of the cotton pest Heliothis virescens (F.) is resistant to both Cry1Ac and Cry2Aa toxins from Bt. We explored the genetic basis of resistance in this strain with a backcross, split-family design. The gene with the largest effect on Cry1Ac resistance in CP73 (BtR-5) maps to linkage group 10 of H. virescens and thus differs from the previously described linkage group 9 BtR-4 resistance found in the YHD2 strain, involving mutation of the gene encoding a 12-domain cadherin-like binding target of the Cry1A toxins. Neither BtR-4 nor BtR-5 seems to confer significant resistance to Cry2Aa. A majority of the linkage groups studied in one backcross family made a small positive contribution to resistance for both toxins. Thus, the Cry2Aa resistance in CP73 is not caused by either of the two major Cry1Ac resistance-conferring genes but instead probably has a quantitative genetic basis.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Endotoxinas , Resistência a Inseticidas/genética , Inseticidas , Mariposas/genética , Animais , Toxinas de Bacillus thuringiensis , Ligação Genética , Proteínas Hemolisinas , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA