Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag Res ; 35(1): 65-78, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27837187

RESUMO

Knowledge about the total waste generated by the production of consumer goods can help raise awareness among policy-makers, producers and consumers of the benefits of closing loops in a future circular economy, avoiding unnecessary production and production steps and associated generation of large amounts of waste. In strict life cycle assessment practice, information on waste outputs from intermediate industrial processes of material and energy transformation is translated into and declared as potential environmental impacts, which are often not reported in the final results. In this study, a procedure to extract available intermediate data and perform a systematic pre-consumer waste footprint analysis was developed. The pre-consumer waste footprint concept was tested to analyse 10 generic products, which provided some novel and interesting results for the different product categories and identified a number of challenges that need to be resolved in development of the waste footprint concept. These challenges include standardised data declaration on waste in life cycle assessment, with a separation into waste categories illustrating the implicit environmental and scale of significance of waste types and quantities (e.g. hazardous waste, inert waste, waste for recycling/incineration) and establishment of a common definition of waste throughout sectors and nations.


Assuntos
Resíduos Sólidos/análise , Gerenciamento de Resíduos/estatística & dados numéricos , Águas Residuárias , Vestuário , Computadores , Meio Ambiente , Alimentos , Embalagem de Alimentos , Papel
2.
Environ Evid ; 12(1): 24, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294764

RESUMO

BACKGROUND: As natural disasters increase in both frequency and magnitude because of climate change, assets, such as buildings and infrastructure, are exposed to physical climate risk. In addition, as our societies transition towards a greener economy, the transitional climate risk will manifest itself in different forms: reputational issues, market solutions that may drive out those that do not comply, technological disruptions and policy initiatives. How both risks, physical and transitional, impact the economic value of real estate assets is not well understood and will be investigated as the main scope of this systematic map. METHOD: we use systematic mapping to collate and configure existing evidence on how climate risk has affected the economic value of real estate assets. After designing a search string, English language peer-reviewed publications will be retrieved from the two largest and most popular scientific research databases, as well as a database containing policy documents. This corpus will be tested for comprehensiveness using a benchmark of 50 highly relevant articles. Once the comprehensiveness test is passed, a consistency test will be carried out on the screening of a randomly selected list of 200 articles by three reviewers. If a kappa score of at least 0.6 is achieved, one of the reviewers will carry out the remainder of the screening, with another reviewer quality assuring 10% of the screening. The retained corpus will then be distributed over the three reviewers, who will carry out the extraction of metadata according to an agreed coding strategy. The final output of the coding will consist of a heat map, showcasing where substantial evidence is available, and research gaps, providing recommendations for further research. In addition, the results will provide insight into the methodology to quantify the impact of climate risk on real estate value. Figures and tables will be designed to make it easy to comprehend the results of the mapping.

3.
Waste Manag Res ; 25(3): 263-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17612327

RESUMO

A large number of methods and approaches that can be used for supporting waste management decisions at different levels in society have been developed. In this paper an overview of methods is provided and preliminary guidelines for the choice of methods are presented. The methods introduced include: Environmental Impact Assessment, Strategic Environmental Assessment, Life Cycle Assessment, Cost-Benefit Analysis, Cost-effectiveness Analysis, Life-cycle Costing, Risk Assessment, Material Flow Accounting, Substance Flow Analysis, Energy Analysis, Exergy Analysis, Entropy Analysis, Environmental Management Systems, and Environmental Auditing. The characteristics used are the types of impacts included, the objects under study and whether the method is procedural or analytical. The different methods can be described as systems analysis methods. Waste management systems thinking is receiving increasing attention. This is, for example, evidenced by the suggested thematic strategy on waste by the European Commission where life-cycle analysis and life-cycle thinking get prominent positions. Indeed, life-cycle analyses have been shown to provide policy-relevant and consistent results. However, it is also clear that the studies will always be open to criticism since they are simplifications of reality and include uncertainties. This is something all systems analysis methods have in common. Assumptions can be challenged and it may be difficult to generalize from case studies to policies. This suggests that if decisions are going to be made, they are likely to be made on a less than perfect basis.


Assuntos
Conservação dos Recursos Naturais , Técnicas de Apoio para a Decisão , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Abastecimento de Água , Saúde Ambiental , Monitoramento Ambiental , Europa (Continente) , Humanos , Modelos Econômicos , Eliminação de Resíduos/economia , Medição de Risco , Gerenciamento de Resíduos/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA