Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808146

RESUMO

Solid-state batteries (SSBs) have emerged as a potential alternative to conventional Li-ion batteries (LIBs) since they are safer and offer higher energy density. Despite the hype, SSBs are yet to surpass their liquid counterparts in terms of electrochemical performance. This is mainly due to challenges at both the materials and cell integration levels. Various strategies have been devised to address the issue of SSBs. In this review, we have explored the role of graphene-based materials (GBM) in enhancing the electrochemical performance of SSBs. We have covered each individual component of an SSB (electrolyte, cathode, anode, and interface) and highlighted the approaches using GBMs to achieve stable and better performance. The recent literature shows that GBMs impart stability to SSBs by improving Li+ ion kinetics in the electrodes, electrolyte and at the interfaces. Furthermore, they improve the mechanical and thermal properties of the polymer and ceramic solid-state electrolytes (SSEs). Overall, the enhancements endowed by GBMs will address the challenges that are stunting the proliferation of SSBs.

2.
Polymers (Basel) ; 13(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372170

RESUMO

Polyester nanocomposites reinforced with graphene nanoplatelets (GnPs) with two different lateral sizes are prepared by high shear mixing, followed by compression molding. The effects of the size and concentration of GnP, as well as of the processing method, on the electrical conductivity and electromagnetic interference (EMI) shielding behavior of these nanocomposites are experimentally investigated. The in-plane electrical conductivity of the nanocomposites with larger-size GnPs is approximately one order of magnitude higher than the cross-plane volume conductivity. According to the SEM images, the compression-induced alignments of GnPs is found to be responsible for this anisotropic behavior. The orientation of the small size GnPs in the composite is not influenced by the compression process as strongly, and consequently, the electrical conductivity of these nanocomposites exhibits only a slight anisotropy. The maximum EMI shielding effectiveness (SE) of 27 dB (reduction of 99.8% of the incident radiation) is achieved at 25 wt.% of the smaller-size GnP loading. Experimental results show that the EMI shielding mechanism of these composites has a strong dependency on the lateral dimension of GnPs. The non-aligned smaller-size GnPs are leveraged to obtain a relatively high absorption coefficient (≈40%). This absorption coefficient is superior to the existing single-filler bulk polymer composite with a similar thickness.

3.
Polymers (Basel) ; 12(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066586

RESUMO

Production process was chosen in order to be readily scalable at the industrial level. The resin/graphene mixture was prepared through high shear mixing at six different weight concentrations between 0% and 10%. Samples were subsequently produced by compression molding. The electrical properties were measured both in-the-plane and across-the-plane using, respectively, a four-point probe and a two-electrode system. The two-electrode system was a dielectric spectrometer, and accordingly, the across-the-plane measurements were conducted in the frequency-domain. Mechanical measurements were conducted using conventional three-point bending and impact setups. The percolation threshold was found to be in the range of 3-5 wt.% concentration, for which the conductivity showed a 7 orders of magnitude increase. These results were quite similar to the samples containing around 50 wt.% of glass fibers. Surprisingly, the in-the-plane conductivity was found to be lower than the bulk conductivity, contrary to what was found with the same filler for thermoplastic composites prepared by melt compounding. No significant increase in mechanical properties as a function of filler loading was observed, except maybe a slight increase in the material toughness.

4.
Materials (Basel) ; 12(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871139

RESUMO

In this work, we investigated three types of graphene (i.e., home-made G, G V4, and G V20) with different size and morphology, as additives to a lithium iron phosphate (LFP) cathode for the lithium-ion battery. Both the LFP and the two types of graphene (G V4 and G V20) were sourced from industrial, large-volume manufacturers, enabling cathode production at low cost. The use of wrinkled and/or large pieces of a graphene matrix shows promising electrochemical performance when used as an additive to the LFP, which indicates that the features of large and curved graphene pieces enable construction of a more effective conducting network to realize the full potential of the active materials. Specifically, compared to pristine LFP, the LFP/G, LFP/G V20, and LFP/G V4 show up to a 9.2%, 6.9%, and 4.6% increase, respectively, in a capacity at 1 C. Furthermore, the LFP combined with graphene exhibits a better rate performance than tested with two different charge/discharge modes. Moreover, from the economic and electrochemical performance view point, we also demonstrated that 1% of graphene content is optimized no matter the capacity calculated, based on the LFP/graphene composite or pure LFP.

5.
ACS Appl Mater Interfaces ; 11(44): 41726-41735, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31610650

RESUMO

Ideal dielectric materials for microelectronic devices should have high directionally tailored thermoconductivity with low dielectric constant and loss. Hexagonal boron nitride (hBN) with excellent thermal and dielectric properties shows a promise for the fabrication of thermoconductive dielectric polymer composites. Herein, a simple method for the fabrication of lightweight polymer/hBN composites with high directionally tailored thermoconductivity and excellent dielectric properties is presented. The solid polymer/hBN composites are manufactured by melt-compounding and injection molding. The porous composites are successfully manufactured in an injection molding process through supercritical fluid (SCF) foaming. X-ray tomography provides direct visualization of the internal microstructure and hBN orientation, leading to an in-depth understanding of the directionally dependent thermoconductivity of the polymer/hBN composite. Shear-induced orientation of hBN platelets in the solid HDPE/hBN composites leads to a significant anisotropic thermal conductivity. The solid HDPE/23.2 vol % hBN composites show an in-plane thermoconductivity as high as 10.1 W m-1 K-1, whereas the through-plane thermoconductivity is limited to 0.28 W m-1 K-1. However, the generation of a porous structure via SCF foaming imparts in situ exfoliation, random orientation, and interconnectivity of hBN platelets within the polymer matrix. This results in highly isotropic thermoconductivity with higher bulk thermal conductivity in the lightweight porous composites as compared to their solid counterparts. Furthermore, the electrically insulating composites developed in this study exhibit low dielectric constant and ultralow dielectric loss. Thus, this study presents a simple fabrication method to develop lightweight dielectric materials with tailored thermal conductivity for modern electronics.

6.
ACS Appl Mater Interfaces ; 10(36): 30752-30761, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30124039

RESUMO

Lightweight high-density polyethylene (HDPE)-graphene nanoplatelet (GnP) composite foams were fabricated via a supercritical-fluid (SCF) treatment and physical foaming in an injection-molding process. We demonstrated that the introduction of a microcellular structure can substantially increase the electrical conductivity and can decrease the percolation threshold of the polymer-GnP composites. The nanocomposite foams had a significantly higher electrical conductivity, a higher dielectric constant, a higher electromagnetic interference (EMI) shielding effectiveness (SE), and a lower percolation threshold compared to their regular injection-molded counterparts. The SCF treatment and foaming exfoliated the GnPs in situ during the fabrication process. This process also changed the GnP's flow-induced arrangement by reducing the melt viscosity and cellular growth. Moreover, the generation of a cellular structure rearranged the GnPs to be mainly perpendicular to the radial direction of the bubble growth. This enhanced the GnP's interconnectivity and produced a unique GnP arrangement around the cells. Therefore, the through-plane conductivity increased up to a maximum of 9 orders of magnitude and the percolation threshold decreased by up to 62%. The lightweight injection-molded nanocomposite foams of 9.8 vol % GnP exhibited a real permittivity of ε' = 106.4, which was superior to that of their regular injection-molded (ε' = 6.2). A maximum K-band EMI SE of 31.6 dB was achieved in HDPE-19 vol % GnP composite foams, which was 45% higher than that of the solid counterpart. In addition, the physical foaming reduced the density of the HDPE-GnP foams by up to 26%. Therefore, the fabricated polymer-GnP nanocomposite foams in this study pointed toward the further development of lightweight and conductive polymer-GnP composites with tailored properties.

7.
ACS Appl Mater Interfaces ; 10(23): 19987-19998, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29745647

RESUMO

Dielectric polymer nanocomposites with high dielectric constant (ε') and low dielectric loss (tan δ) are extremely desirable in the electronics industry. Percolative polymer-graphene nanoplatelet (GnP) composites have shown great promise as dielectric materials for high-performance capacitors. Herein, an industrially-viable technique for manufacturing a new class of ultralight polymer composite foams using commercial GnPs with excellent dielectric performance is presented. Using this method, the high-density polyethylene (HDPE)-GnPs composites with a microcellular structure were fabricated by melt-mixing. This was followed by supercritical fluid (SCF) treatment and physical foaming in an extrusion process, which added an extra layer of design flexibility. The SCF treatment effectively in situ exfoliated the GnPs in the polymer matrix. Moreover, the generation of a microcellular structure produced numerous parallel-plate nanocapacitors consisting of GnP pairs as electrodes with insulating polymer as nanodielectrics. This significantly increased the real permittivity and decreased the dielectric loss. The ultralight extruded HDPE-1.08 vol % GnP composite foams, with a 0.15 g·cm-3 density, had an excellent combination of dielectric properties (ε' = 77.5, tan δ = 0.003 at 1 × 105 Hz), which were superior to their compression-molded counterparts (ε' = 19.9, tan δ = 0.15 and density of = 1.2 g·cm-3) and to those reported in the literature. This dramatic improvement resulted from in situ GnP's exfoliation and dispersion, as well as a unique GnP parallel-plate arrangement around the cells. Thus, this facile method provides a scalable method to produce ultralight dielectric polymer nanocomposites, with a microscopically tailored microstructure for use in electronic devices.

8.
Nanoscale ; 8(2): 889-900, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26649627

RESUMO

Individually-addressable nano-electro-mechanical (NEMS) devices have been used to demonstrate sensitive mass detection to the single-proton level, as well as neutral-particle mass spectrometry. The cost of individually securing or patterning such devices is proportional to their number or the chip area covered. This limits statistical support for new research, as well as paths to the commercial availability of extraordinarily sensitive instruments. Field-directed assembly of synthesized nanowires addresses this problem and shows potential for low-cost, large-area coverage with NEMS devices. For positive dielectrophoresis (pDEP) as the main assembly director, the space of field, geometric and material parameters is large, with combinations that can serve either as directors or disruptors for directed assembly. We seek parameter values to obtain the best yield, by introducing a rational framework to reduce trial-and-error. We show that sorting the disruptors by severity and eliminating those weakly coupled to the director, allows reduction of the parameter space. The remaining disruptors are then represented compactly by dimensionless parameters. In the example protocol chosen, a single dimensionless parameter, the yield index, allows minimization of disruptors by the choice of frequency. Following this, the voltage may be selected to maximize the yield. Using this framework, we obtained 94% pre-clamped and 88% post-clamped yield over 57000 nanowire sites. Organizing the parameter space using a director-disruptor framework, with economy introduced by non-dimensional parameters, provides a path to controllably decrease the effort and cost of manufacturing nanoscale devices. This should help in the commercialization of individually addressable nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA