Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 145(16): 164311, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27802636

RESUMO

The internal energy transferred when projectile molecular ions of naphthalene collide with argon gas atoms was extracted from the APCI-CID (atmospheric-pressure chemical ionization collision-induced dissociation) mass spectra acquired as a function of collision energy. Ion abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions pME,Tchar. The mean vibrational energy excess of the ions was characterized by the parameter Tchar ("characteristic temperature"), determined by fitting the theoretical ion abundances to the experimental breakdown graph (a plot of relative abundances of the ions as a function of kinetic energy) of activated naphthalene ions. According to these results, the APCI ion source produces species below Tchar = 1457 K, corresponding to 3.26 eV above the vibrational ground state. Subsequent collisions heat the ions up further, giving rise to a sigmoid curve of Tchar as a function of Ecom (center-of-mass-frame kinetic energy). The differential internal energy absorption per kinetic energy unit (dEvib/dEcom) changes with Ecom according to a symmetric bell-shaped function with a maximum at 6.38 ± 0.32 eV (corresponding to 6.51 ± 0.27 eV of vibrational energy excess), and a half-height full width of 6.30 ± 1.15 eV. This function imposes restrictions on the amount of energy that can be transferred by collisions, such that a maximum is reached as kinetic energy is increased. This behavior suggests that the collisional energy transfer exhibits a pronounced increase around some specific value of energy. Finally, the model is tested against the CID mass spectra of anthracene and pyrene ions and the corresponding results are discussed.

2.
J Phys Chem A ; 118(42): 9870-8, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25245634

RESUMO

The dissociation of the anthracene radical cation has been studied using two different methods: imaging photoelectron photoion coincidence spectrometry (iPEPCO) and atmospheric pressure chemical ionization-collision induced dissociation mass spectrometry (APCI-CID). Four reactions were investigated: (R1) C14H10(+•) → C14H9(+) + H, (R2) C14H9(+) → C14H8(+•) + H, (R3) C14H10(+•) → C12H8(+•) + C2H2 and (R4) C14H10(+•) → C10H8(+•) + C4H2. An attempt was made to assign structures to each fragment ion, and although there is still room for debate whether for the C12H8(+•) fragment ion is a cyclobuta[b]naphthalene or a biphenylene cation, our modeling results and calculations appear to suggest the more likely structure is cyclobuta[b]naphthalene. The results from the iPEPICO fitting of the dissociation of ionized anthracene are E0 = 4.28 ± 0.30 eV (R1), 2.71 ± 0.20 eV (R2), and 4.20 ± 0.30 eV (average of reaction R3) whereas the Δ(‡)S values (in J K(-1) mol(-1)) are 12 ± 15 (R1), 0 ± 15 (R2), and either 7 ± 10 (using cyclobuta[b]naphthalene ion fragment in reaction R3) or 22 ± 10 (using the biphenylene ion fragment in reaction R3). Modeling of the APCI-CID breakdown diagrams required an estimate of the postcollision internal energy distribution, which was arbitrarily assumed to correspond to a Boltzmann distribution in this study. One goal of this work was to determine if this assumption yields satisfactory energetics in agreement with the more constrained and theoretically vetted iPEPICO results. In the end, it did, with the APCI-CID results being similar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA