Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049835

RESUMO

Tailoring high-efficiency photocatalytic composites for various implementations is a major research topic. 1D TNTs-based nanomaterials show promise as a photocatalyst for the remediation of organic pigments in an aqueous solution. Despite this, TiO2 (TNTs) is only photoactive in the UV range due to its inherent restriction on absorption of light in the UV range. Herein, we provide a facile recipe to tailor the optical characteristics and photocatalytic activity of TNTs by incorporating Zn (II) ionic species via an ion-exchange approach in an aqueous solution. The inclusion of Zn (II) ions into the TNTs framework expands its absorption of light toward the visible light range, therefore TiO2 nanotubes shows the visible-light photo-performance. Activity performance on photocatalytic decontamination of RhB at ambient temperature demonstrates that Zn-TNTs offer considerable boosted catalytic performance compared with untreated tubular TiO2 during the illumination of visible light. RhB (10 mg L-1) degradation of around 95% was achieved at 120 min. Radical scavenger experiment demonstrated that when electron (e-) or holes (h+) scavengers are introduced to the photodegradation process, the assessment of decontamination efficacy decreased by 45% and 76%, respectively. This demonstrates a more efficient engagement of the photoexcited electrons over photogenerated holes in the photodegradation mechanism. Furthermore, there seems to be no significant decrease in the activity of the Zn-TNTs after five consecutive runs. As a result, the fabricated Zn-TNTs composite has a high economic potential in the energy and environmental domains.

2.
RSC Adv ; 13(20): 14018-14032, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37181514

RESUMO

Water splitting using photoelectrochemical (PEC) techniques is thought to be a potential method for creating green hydrogen as a sustainable energy source. How to create extremely effective electrode materials is a pressing concern in this area. In this work, a series of Nix/TiO2 anodized nanotubes (NTs) and Auy/Nix/TiO2NTs photoanodes were prepared by electrodeposition via cyclic voltammetry and UV-photoreduction, respectively. The photoanodes were characterized by several structural, morphological, and optical techniques and their performance in PEC water-splitting for oxygen evolution reaction (OER) under simulated solar light was investigated. The obtained results revealed the nanotubular structure of TiO2NTs was preserved after deposition of NiO and Au nanoparticles while the band gap energy was reduced allowing for effective utilization of solar light with lower charge recombination rate. The PEC performance was monitored and it was found that the photocurrent densities of Ni20/TiO2NTs and Au30/Ni20/TiO2NTs were 1.75-fold and 3.25-fold that of pristine TiO2NTs, respectively. It was confirmed that the performance of the photoanodes depends on the number of electrodeposition cycles and duration of photoreduction of gold salt solution. The observed enhanced OER activity of Au30/Ni20/TiO2NTs could be attributed to the synergism between the local surface plasmon resonance (LSPR) effect of nanometric gold which increased solar light harvesting and the p-n heterojunction formed at the NiO/TiO2 interface which led to better charge separation and transportation suggesting its potential application as an efficient and stable photoanode in PEC water splitting for H2 production.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120474, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34689088

RESUMO

A new fluorescent sensing microtiter plate (MTP) was developed for high sensitivity monitoring of anthracene in seawater samples. For this purpose, two ternary complexes of Tb(III) ions with dibenzoylmethane and neocuproine [Tb(DBM)2(MePhen)] or with dibenzoylmethane and bathocuproine [Tb(DBM)2(PhMePhen)] were synthesized. Elemental analysis, energy dispersive X-ray analysis, X-ray diffraction, infrared and ultraviolet-visible emission, and thermal analysis were conducted on the Tb(III) complexes. The limits of detection (DL) were 0.14 and 1.05 µmol L-1 for [Tb(DBM)2(MePhen)] and [Tb(DBM)2(PhMePhen)], respectively. [Tb(DBM)2(PhMePhen)] MTP is embedded in a membrane made of cellulose acetate. The first high-throughput anthracene sensor MTP, based on [Tb(DBM)2(PhMePhen)] sensor showed a linear range, from 0.2 to 20 µmol L-1. [Tb(DBM)2(PhMePhen)] MTP was validated for accurate and precise monitoring of anthracene using gas chromatography. The selectivity of the [Tb(DBM)2(PhMePhen)] MTP toward anthracene was examined. The data indicated that [Tb(DBM)2(PhMePhen)] MTP is suitable for rapid and direct detection of anthracene.


Assuntos
Antracenos , Térbio , Íons , Água do Mar , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA