Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(1): 104-116.e12, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502971

RESUMO

Human diseases are often caused by loss of somatic cells that are incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found that overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat, and human cardiomyocytes. Overexpression of the cell-cycle regulators was self-limiting through proteasome-mediated degradation of the protein products. In vivo lineage tracing revealed that 15%-20% of adult cardiomyocytes expressing the four factors underwent stable cell division, with significant improvement in cardiac function after acute or subacute myocardial infarction. Chemical inhibition of Tgf-ß and Wee1 made CDK1 and cyclin B dispensable. These findings reveal a discrete combination of genes that can efficiently unlock the proliferative potential in cells that have terminally exited the cell cycle.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Citocinese , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/veterinária , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Ratos , Regeneração , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
2.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984724

RESUMO

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Assuntos
Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cromatina , Elementos Facilitadores Genéticos , Feminino , Coração/crescimento & desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas com Domínio T/genética
3.
Circulation ; 148(14): 1099-1112, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37602409

RESUMO

BACKGROUND: Cardiac reprogramming is a technique to directly convert nonmyocytes into myocardial cells using genes or small molecules. This intervention provides functional benefit to the rodent heart when delivered at the time of myocardial infarction or activated transgenically up to 4 weeks after myocardial infarction. Yet, several hurdles have prevented the advancement of cardiac reprogramming for clinical use. METHODS: Through a combination of screening and rational design, we identified a cardiac reprogramming cocktail that can be encoded in a single adeno-associated virus. We also created a novel adeno-associated virus capsid that can transduce cardiac fibroblasts more efficiently than available parental serotypes by mutating posttranslationally modified capsid residues. Because a constitutive promoter was needed to drive high expression of these cell fate-altering reprogramming factors, we included binding sites to a cardiomyocyte-restricted microRNA within the 3' untranslated region of the expression cassette that limits expression to nonmyocytes. After optimizing this expression cassette to reprogram human cardiac fibroblasts into induced cardiomyocyte-like cells in vitro, we also tested the ability of this capsid/cassette combination to confer functional benefit in acute mouse myocardial infarction and chronic rat myocardial infarction models. RESULTS: We demonstrated sustained, dose-dependent improvement in cardiac function when treating a rat model 2 weeks after myocardial infarction, showing that cardiac reprogramming, when delivered in a single, clinically relevant adeno-associated virus vector, can support functional improvement in the postremodeled heart. This benefit was not observed with GFP (green fluorescent protein) or a hepatocyte reprogramming cocktail and was achieved even in the presence of immunosuppression, supporting myocyte formation as the underlying mechanism. CONCLUSIONS: Collectively, these results advance the application of cardiac reprogramming gene therapy as a viable therapeutic approach to treat chronic heart failure resulting from ischemic injury.


Assuntos
MicroRNAs , Infarto do Miocárdio , Ratos , Camundongos , Humanos , Animais , Dependovirus/genética , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Reprogramação Celular , Fibroblastos/metabolismo
4.
Circulation ; 145(17): 1339-1355, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35061545

RESUMO

BACKGROUND: The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice. METHODS: Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Using rat and pig models of ischemic heart failure, we aimed to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. RESULTS: Temporal bulk and single-cell RNA sequencing and further biochemical validations of mature human induced pluripotent stem cell-derived cardiomyocytes treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population at 48 hours after infection with 4F, which was associated mainly with sarcomere disassembly and metabolic reprogramming (n=3/time point/group). Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic nonintegrating lentivirus (NIL) encoding 4F; each is driven by a TNNT2 (cardiac troponin T isoform 2) promoter (TNNT2-4Fpolycistronic-NIL). TNNT2-4Fpolycistronic-NIL or control virus was injected intramyocardially 1 week after myocardial infarction in rats (n=10/group) or pigs (n=6-7/group). Four weeks after injection, TNNT2-4Fpolycistronic-NIL-treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus-treated animals. At 4 months after treatment, rats that received TNNT2-4Fpolycistronic-NIL still showed a sustained improvement in cardiac function and no obvious development of cardiac arrhythmias or systemic tumorigenesis (n=10/group). CONCLUSIONS: This study provides mechanistic insights into the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors owing to the use of a novel transient and cardiomyocyte-specific viral construct.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Ciclo Celular , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Ratos , Volume Sistólico , Suínos , Função Ventricular Esquerda
5.
Stem Cells ; 40(5): 458-467, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35263763

RESUMO

The adult mammalian heart is recalcitrant to regeneration after injury, in part due to the postmitotic nature of cardiomyocytes. Accumulating evidence suggests that cardiomyocyte proliferation in fetal or neonatal mammals and in regenerative non-mammalian models depends on a conducive metabolic state. Results from numerous studies in adult hearts indicate that conditions of relatively low fatty acid oxidation, low reactive oxygen species generation, and high glycolysis are required for induction of cardiomyocyte proliferation. Glycolysis appears particularly important because it provides branchpoint metabolites for several biosynthetic pathways that are essential for synthesis of nucleotides and nucleotide sugars, amino acids, and glycerophospholipids, all of which are required for daughter cell formation. In addition, the proliferative cardiomyocyte phenotype is supported in part by relatively low oxygen tensions and through the actions of critical transcription factors, coactivators, and signaling pathways that promote a more glycolytic and proliferative cardiomyocyte phenotype, such as hypoxia inducible factor 1α (Hif1α), Yes-associated protein (Yap), and ErbB2. Interventions that inhibit glycolysis or its integrated biosynthetic pathways almost universally impair cardiomyocyte proliferative capacity. Furthermore, metabolic enzymes that augment biosynthetic capacity such as phosphoenolpyruvate carboxykinase 2 and pyruvate kinase M2 appear to be amplifiers of cardiomyocyte proliferation. Collectively, these studies suggest that acquisition of a glycolytic and biosynthetic metabolic phenotype is a sine qua non of cardiomyocyte proliferation. Further knowledge of the regulatory mechanisms that control substrate partitioning to coordinate biosynthesis with energy provision could be leveraged to prompt or augment cardiomyocyte division and to promote cardiac repair.


Assuntos
Coração , Miócitos Cardíacos , Animais , Proliferação de Células , Glicólise , Mamíferos , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
6.
Mol Cell Biochem ; 478(6): 1245-1250, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36282351

RESUMO

The loss of cardiomyocytes after myocardial infarction (MI) leads to heart failure. Recently, we demonstrated that transient overexpression of 4 cell cycle factors (4F), using a polycistronic non-integrating lentivirus (TNNT2-4F-NIL) resulted in significant improvement in cardiac function in a rat model of MI. Yet, it is crucial to demonstrate the reversal of the heart failure-related pathophysiological manifestations, such as renin-angiotensin-aldosterone system activation (RAAS). To assess that, Fisher 344 rats were randomized to receive TNNT2-4F-NIL or control virus seven days after coronary occlusion for 2 h followed by reperfusion. 4 months after treatment, N-terminal pro-brain natriuretic peptide, plasma renin activity, and aldosterone levels returned to the normal levels in rats treated with TNNT2-4F-NIL but not in vehicle-treated rats. Furthermore, the TNNT2-4F-NIL-treated group showed significantly less liver and kidney congestion than vehicle-treated rats. Thus, we conclude that in rat models of MI, TNNT2-4F-NIL reverses RAAS activation and subsequent systemic congestion.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Ratos , Aldosterona/metabolismo , Ciclo Celular , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo , Rim/metabolismo , Infarto do Miocárdio/metabolismo , Renina/genética , Renina/metabolismo , Sistema Renina-Angiotensina
7.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31310161

RESUMO

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Assuntos
Biomimética/métodos , Ventrículos do Coração/ultraestrutura , Função Ventricular/fisiologia , Adulto , Animais , Feminino , Coração/fisiologia , Ventrículos do Coração/citologia , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Miocárdio/citologia , Miocárdio/ultraestrutura , Técnicas de Cultura de Órgãos/métodos , Suínos , Transcriptoma/fisiologia
8.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299340

RESUMO

Unlike some lower vertebrates which can completely regenerate their heart, the human heart is a terminally differentiated organ. Cardiomyocytes lost during cardiac injury and heart failure cannot be replaced due to their limited proliferative capacity. Therefore, cardiac injury generally leads to progressive failure. Here, we summarize the latest progress in research on methods to induce cardiomyocyte cell cycle entry and heart repair through the alteration of cardiomyocyte plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions.


Assuntos
Proliferação de Células/fisiologia , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/metabolismo , Animais , Ciclo Celular , Plasticidade Celular/genética , Plasticidade Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Coração/fisiologia , Insuficiência Cardíaca/fisiopatologia , Traumatismos Cardíacos/terapia , Humanos , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia , Transdução de Sinais
9.
Toxicol Appl Pharmacol ; 406: 115213, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877659

RESUMO

The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 µm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 µM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.


Assuntos
Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Coração/efeitos dos fármacos , Modelos Biológicos , Técnicas de Cultura de Tecidos , Adulto , Idoso , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Feminino , Coração/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Suínos , Trastuzumab/efeitos adversos
10.
Circulation ; 135(10): 978-995, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-27834668

RESUMO

BACKGROUND: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. METHODS: We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. RESULTS: We found that a combination of the transforming growth factor-ß inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-ß and WNT inhibition and was achieved most efficiently with GMT plus myocardin. CONCLUSIONS: Transforming growth factor-ß and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration.


Assuntos
Benzamidas/farmacologia , Reprogramação Celular/efeitos dos fármacos , Dioxóis/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Fatores de Transcrição/metabolismo , Animais , Benzamidas/uso terapêutico , Células Cultivadas , Dioxóis/uso terapêutico , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração/diagnóstico por imagem , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(41): 12705-10, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417073

RESUMO

Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-µm(2) rectangles with length:width aspect ratios of 5:1-7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level.


Assuntos
Diferenciação Celular , Forma Celular , Modelos Biológicos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Sinalização do Cálcio , Células Cultivadas , Humanos , Mitocôndrias Cardíacas , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia
12.
J Biol Chem ; 289(35): 24275-88, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25035424

RESUMO

The Hippo signaling pathway has recently moved to center stage in cardiac research because of its key role in cardiomyocyte proliferation and regeneration of the embryonic and newborn heart. However, its role in the adult heart is incompletely understood. We investigate here the role of mammalian Ste20-like kinase 2 (Mst2), one of the central regulators of this pathway. Mst2(-/-) mice showed no alteration in cardiomyocyte proliferation. However, Mst2(-/-) mice exhibited a significant reduction of hypertrophy and fibrosis in response to pressure overload. Consistently, overexpression of MST2 in neonatal rat cardiomyocytes significantly enhanced phenylephrine-induced cellular hypertrophy. Mechanistically, Mst2 positively modulated the prohypertrophic Raf1-ERK1/2 pathway. However, activation of the downstream effectors of the Hippo pathway (Yes-associated protein) was not affected by Mst2 ablation. An initial genetic study in mitral valve prolapse patients revealed an association between a polymorphism in the human MST2 gene and adverse cardiac remodeling. These results reveal a novel role of Mst2 in stress-dependent cardiac hypertrophy and remodeling in the adult mouse and likely human heart.


Assuntos
Cardiomegalia/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Animais , Apoptose , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Proliferação de Células , Humanos , Marcação In Situ das Extremidades Cortadas , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilefrina/efeitos adversos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Serina-Treonina Quinase 3
14.
Arterioscler Thromb Vasc Biol ; 34(10): 2310-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147342

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. APPROACH AND RESULTS: Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. CONCLUSIONS: Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.


Assuntos
Indutores da Angiogênese/farmacologia , Calcineurina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Proteínas de Ligação ao Cálcio , ATPases Transportadoras de Cálcio/deficiência , ATPases Transportadoras de Cálcio/genética , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células HEK293 , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/enzimologia , Isquemia/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
15.
Methods Mol Biol ; 2803: 61-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676885

RESUMO

Testing drugs in vivo and in vitro have been essential elements for the discovery of new therapeutics. Due to the recent advances in in vitro cell culture models, such as human-induced pluripotent stem cell-derived cardiomyocytes and 3D multicell type organoid culture methods, the detection of adverse cardiac events prior to human clinical trials has improved. However, there are still numerous therapeutics whose adverse cardiac effects are not detected until human trials due to the inability of these cell cultures to fully model the complex multicellular organization of an intact human myocardium. Cardiac tissue slices are a possible alternative solution. Myocardial slices are a 300-micron thin snapshot of the myocardium, capturing a section of the adult heart in a 1 × 1 cm section. Using a culture method that incorporates essential nutrients and electrical stimulation, tissue slices can be maintained in culture for 6 days with full viability and functionality. With the addition of mechanical stimulation and humoral cues, tissue slices can be cultured for 12 days. Here we provide detailed methods for how to culture cardiac tissue slices under continuous mechanical stimulation in the cardiac tissue culture model (CTCM) device. The CTCM incorporates four essential factors for maintaining tissue slices in culture for 12 days: mechanical stimulation, electrical stimulation, nutrients, and humoral cues. The CTCM can also be used to model disease conditions, such as overstretch-induced cardiac hypertrophy. The versatility of the CTCM illustrates its potential to be a medium-throughput screening platform for personalized drug testing.


Assuntos
Miocárdio , Miócitos Cardíacos , Técnicas de Cultura de Tecidos , Humanos , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Tecidos/métodos , Animais , Coração/fisiologia , Estimulação Elétrica , Estresse Mecânico
16.
Cardiovasc Res ; 120(2): 152-163, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38175760

RESUMO

AIMS: Gene therapies to induce cardiomyocyte (CM) cell cycle re-entry have shown a potential to treat subacute ischaemic heart failure (IHF) but have not been tested in the more relevant setting of chronic IHF. Our group recently showed that polycistronic non-integrating lentivirus encoding Cdk1/CyclinB1 and Cdk4/CyclinD1 (TNNT2-4Fpolycistronic-NIL) is effective in inducing CM cell cycle re-entry and ameliorating subacute IHF models and preventing the subsequent IHF-induced congestions in the liver, kidneys, and lungs in rats and pigs. Here, we aim to test the long-term efficacy of TNNT2-4Fpolycistronic-NIL in a rat model of chronic IHF, a setting that differs pathophysiologically from subacute IHF and has greater clinical relevance. METHODS AND RESULTS: Rats were subjected to a 2-h coronary occlusion followed by reperfusion; 4 weeks later, rats were injected intramyocardially with either TNNT2-4Fpolycistronic-NIL or LacZ-NIL. Four months post-viral injection, TNNT2-4Fpolycistronic-NIL-treated rats showed a significant reduction in scar size and a significant improvement in left ventricular (LV) systolic cardiac function but not in the LV dilatation associated with chronic IHF. A mitosis reporter system developed in our lab showed significant induction of CM mitotic activity in TNNT2-4Fpolycistronic-NIL-treated rats. CONCLUSION: This study demonstrates, for the first time, that TNNT2-4Fpolycistronic-NIL gene therapy induces CM cell cycle re-entry in chronic IHF and improves LV function, and that this salubrious effect is sustained for at least 4 months. Given the high prevalence of chronic IHF, these results have significant clinical implications for developing a novel treatment for this deadly disease.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Ratos , Animais , Suínos , Miócitos Cardíacos , Doença Crônica , Terapia Genética , Ciclo Celular
17.
J Mol Cell Cardiol ; 63: 57-68, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23880607

RESUMO

Isoform 4 of the plasma membrane calcium/calmodulin dependent ATPase (PMCA4) has recently emerged as an important regulator of several key pathophysiological processes in the heart, such as contractility and hypertrophy. However, direct monitoring of PMCA4 activity and assessment of calcium dynamics in its vicinity in cardiomyocytes are difficult due to the lack of molecular tools. In this study, we developed novel calcium fluorescent indicators by fusing the GCaMP2 calcium sensor to the N-terminus of PMCA4 to generate the PMCA4-GCaMP2 fusion molecule. We also identified a novel specific inhibitor of PMCA4, which might be useful for studying the role of this molecule in cardiomyocytes and other cell types. Using an adenoviral system we successfully expressed PMCA4-GCaMP2 in both neonatal and adult rat cardiomyocytes. This fusion molecule was correctly targeted to the plasma membrane and co-localised with caveolin-3. It could monitor signal oscillations in electrically stimulated cardiomyocytes. The PMCA4-GCaMP2 generated a higher signal amplitude and faster signal decay rate compared to a mutant inactive PMCA4(mut)GCaMP2 fusion protein, in electrically stimulated neonatal and adult rat cardiomyocytes. A small molecule library screen enabled us to identify a novel selective inhibitor for PMCA4, which we found to reduce signal amplitude of PMCA4-GCaMP2 and prolong the time of signal decay (Tau) to a level comparable with the signal generated by PMCA4(mut)GCaMP2. In addition, PMCA4-GCaMP2 but not the mutant form produced an enhanced signal in response to ß-adrenergic stimulation. Together, the PMCA4-GCaMP2 and PMCA4(mut)GCaMP2 demonstrate calcium dynamics in the vicinity of the pump under active or inactive conditions, respectively. In summary, the PMCA4-GCaMP2 together with the novel specific inhibitor provides new means with which to monitor calcium dynamics in the vicinity of a calcium transporter in cardiomyocytes and may become a useful tool to further study the biological functions of PMCA4. In addition, similar approaches could be useful for studying the activity of other calcium transporters during excitation-contraction coupling in the heart.


Assuntos
Calmodulina/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Ácido Aurintricarboxílico/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/genética , Cavéolas/metabolismo , Membrana Celular/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/genética
18.
J Pharm Pharm Sci ; 16(2): 217-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23958191

RESUMO

PURPOSE: ATPases, which constitute a major category of ion transporters in the human body, have a variety of significant biological and pathological roles. However, the lack of high throughput assays for ATPases has significantly limited drug discovery in this area. We have recently found that the genetic deletion of the ATP dependent calcium pump PMCA4 (plasma membrane calcium/calmodulin dependent ATPase, isoform 4) results in infertility in male mice due to a selective defect in sperm motility. In addition, recent discoveries in humans have indicated that a single nucleotide polymorphism (SNP) in the PMCA4 gene determines the susceptibility towards malaria plasmodium infection. Therefore, there is an urgent need to develop specific PMCA4 inhibitors. In the current study, we aim to optimise and validate a high throughput screening compatible assay using recombinantly expressed PMCA4 and the HTRF® Transcreener® ADP (TR-FRET) assay to screen a drug library. METHODS AND RESULTS: PMCA4 membrane microsomes were prepared from HEK293 cells overexpressing PMCA4. Western blot quantification revealed nearly nine-fold increased expression of PMCA4 compared to LacZ (control virus)-infected cells. Maximal PMCA4 microsomal activity was achieved in the TR-FRET assay with 15ng/µl microsomal concentration, 30-minute pre-incubation with compounds at 37°C, and calcium buffering with 1mM EGTA providing 1µM free-calcium. Finally a dose-response curve for carboxyeosin (a non-specific PMCA inhibitor) under optimised conditions showed significant PMCA4 inhibition. Upon confirmation that the assay was suitable for high-throughput screening, we have screened the ChemBioNet small molecule library (~21,000 compounds) against the PMCA4 assay to identify those that are its apparent inhibitors. This screening yielded 1,494 primary hits. CONCLUSIONS: We have optimised the HTRF® Transcreener® ADP assay for high-throughput screening to identify PMCA4 inhibitors. The output of the screening campaign has provided preliminary chemical starting points that could be further developed to specific PMCA4 inhibitors for non-hormonal contraception or anti-malaria therapy.


Assuntos
Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Anticoncepção , Células HEK293 , Humanos , Malária/tratamento farmacológico , Malária/metabolismo , Microssomos/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
19.
Curr Probl Cardiol ; 48(9): 101745, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37087081

RESUMO

Heart failure with preserved ejection fraction is a growing public health concern, a disease with poor health outcomes, and is showing increased prevalence globally. This review paper explores the literature with a focus on the pathophysiology and microbiology of preserved ejection fraction heart failure while drawing connections between preserved and reduced ejection fraction states. The discussion teases out the cellular level changes that affect the overall dysfunction of the cardiac tissue, including the clinical manifestations, microbiological changes (endothelial cells, fibroblasts, cardiomyocytes, and excitation-contraction coupling), and the burden of structural diastolic dysfunction. The goal of this review is to summarize the pathophysiological disease state of heart failure with preserved ejection fraction to enhance understanding, knowledge, current treatment models of this pathology.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico/fisiologia , Células Endoteliais/patologia , Diástole
20.
Br J Pharmacol ; 180(24): 3271-3289, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37547998

RESUMO

BACKGROUND AND PURPOSE: Myocardial infarction (MI) is the leading cause of mortality globally due in part to the limited ability of cardiomyocytes (CMs) to regenerate. Recently, we demonstrated that overexpression of four-cell cycle factors, CDK1, CDK4, cyclin B1 and cyclin D1 (4F), induced cell division in ~20% of the post-mitotic CMs overexpressed 4F. The current study aims to identify a small molecule that augments 4F-induced CM cycle induction. EXPERIMENTAL APPROACH, KEY RESULTS: Screening of small molecules with a potential to augment 4F-induced cell-cycle induction in 60-day-old mature human induced pluripotent cardiomyocytes (hiPS-CMs) revealed N-(4,6-Dimethylpyridin-2-yl)-4-(pyridine-4-yl)piperazine-1-carbothioamide (NDPPC), which activates cell cycle progression in 4F-transduced hiPS-CMs. Autodock tool and Autodock vina computational methods showed that NDPPC has a potential interaction with the binding site at the human p38⍺ mitogen-activated protein kinase (p38⍺ MAP kinase), a critical negative regulator of the mammalian cell cycle. A p38 MAP kinase activity assay showed that NDPPC inhibits p38⍺ with 5-10 times lower IC50 compared to the other P38 isoforms in a dose-dependent manner. Overexpression of p38⍺ MAP kinase in CMs inhibited 4F cell cycle induction, and treatment with NDPPC reversed the cell cycle inhibitory effect. CONCLUSION AND IMPLICATIONS: NDPPC is a novel inhibitor for p38 MAP kinase and is a promising drug to augment CM cell cycle response to the 4F. NDPPC could become an adjunct treatment with other cell cycle activators for heart failure treatment.


Assuntos
Inibidores Enzimáticos , Miócitos Cardíacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ciclo Celular , Divisão Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA