Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38040490

RESUMO

RNA biology has risen to prominence after a remarkable discovery of diverse functions of noncoding RNA (ncRNA). Most untranslated transcripts often exert their regulatory functions into RNA-RNA complexes via base pairing with complementary sequences in other RNAs. An interplay between RNAs is essential, as it possesses various functional roles in human cells, including genetic translation, RNA splicing, editing, ribosomal RNA maturation, RNA degradation and the regulation of metabolic pathways/riboswitches. Moreover, the pervasive transcription of the human genome allows for the discovery of novel genomic functions via RNA interactome investigation. The advancement of experimental procedures has resulted in an explosion of documented data, necessitating the development of efficient and precise computational tools and algorithms. This review provides an extensive update on RNA-RNA interaction (RRI) analysis via thermodynamic- and comparative-based RNA secondary structure prediction (RSP) and RNA-RNA interaction prediction (RIP) tools and their general functions. We also highlighted the current knowledge of RRIs and the limitations of RNA interactome mapping via experimental data. Then, the gap between RSP and RIP, the importance of RNA homologues, the relationship between pseudoknots, and RNA folding thermodynamics are discussed. It is hoped that these emerging prediction tools will deepen the understanding of RNA-associated interactions in human diseases and hasten treatment processes.


Assuntos
Biologia Computacional , RNA , Humanos , RNA/metabolismo , Biologia Computacional/métodos , RNA não Traduzido/genética , Genômica , Dobramento de RNA , Conformação de Ácido Nucleico , Algoritmos
2.
Crit Rev Food Sci Nutr ; : 1-26, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619217

RESUMO

Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.

3.
Fish Shellfish Immunol ; 142: 109171, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858788

RESUMO

Protein-protein interactions (PPIs) are essential for understanding cell physiology in normal and pathological conditions, as they might involve in all cellular processes. PPIs have been widely used to elucidate the pathobiology of human and plant diseases. Therefore, they can also be used to unveil the pathobiology of infectious diseases in shrimp, which is one of the high-risk factors influencing the success or failure of shrimp production. PPI network analysis, specifically host-pathogen PPI (HP-PPI), provides insights into the molecular interactions between the shrimp and pathogens. This review quantitatively analyzed the research trends within this field through bibliometric analysis using specific keywords, countries, authors, organizations, journals, and documents. This analysis has screened 206 records from the Scopus database for determining eligibility, resulting in 179 papers that were retrieved for bibliometric analysis. The analysis revealed that China and Thailand were the driving forces behind this specific field of research and frequently collaborated with the United States. Aquaculture and Diseases of Aquatic Organisms were the prominent sources for publications in this field. The main keywords identified included "white spot syndrome virus," "WSSV," and "shrimp." We discovered that studies on HP-PPI are currently quite scarce. As a result, we further discussed the significance of HP-PPI by highlighting various approaches that have been previously adopted. These findings not only emphasize the importance of HP-PPI but also pave the way for future researchers to explore the pathogenesis of infectious diseases in shrimp. By doing so, preventative measures and enhanced treatment strategies can be identified.


Assuntos
Doenças Transmissíveis , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Humanos , Bibliometria , China , Tailândia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Interações Hospedeiro-Patógeno
4.
Phytother Res ; 37(3): 1036-1056, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36343627

RESUMO

The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Compostos Fitoquímicos/farmacologia
5.
Biosci Biotechnol Biochem ; 85(7): 1628-1638, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33890631

RESUMO

Juvenile hormone III (JH III) plays an important role in insect reproduction, development, and behavior. The second branch of JH III production includes oxidation of farnesol to farnesal by farnesol dehydrogenase. This study reported the identification and characterization of Plutella xylostella farnesol dehydrogenase (PxFoLDH). Our results showed that PxFoLDH belongs to the short-chain dehydrogenase/reductase superfamily, consisting of a single domain with a structurally conserved Rossman fold, an NAD(P) (H)-binding region and a structurally diverse C-terminal region. The purified enzyme displayed maximum activity at 55$\ $°C with pH 9.5 and was stable in the temperature below 70$\ ^\circ $C. PxFoLDH was determined to be a monomer with a relative molecular weight of 27 kDa and highly specific for trans, trans-farnesol, and NADP+. Among analog inhibitors tested, farnesyl acetate was the most effective inhibitor with the lowest Ki value of 0.02 µm. Our findings showed this purified enzyme may represent as NADP+-farnesol dehydrogenase.


Assuntos
Inseticidas/farmacologia , Lepidópteros/enzimologia , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/antagonistas & inibidores , NADP/química , Animais , Inibidores Enzimáticos/farmacologia , Farneseno Álcool/análogos & derivados , Farneseno Álcool/farmacologia , Concentração de Íons de Hidrogênio , Inseticidas/química , Cinética , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/química , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/metabolismo , Especificidade por Substrato , Temperatura
6.
Reprod Biomed Online ; 40(2): 319-330, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32001161

RESUMO

RESEARCH QUESTION: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder with diverse clinical implications, such as infertility, metabolic disorders, cardiovascular diseases and psychological problems among others. The heterogeneity of conditions found in PCOS contribute to its various phenotypes, leading to difficulties in identifying proteins involved in this abnormality. Several studies, however, have shown the feasibility in identifying molecular evidence underlying other diseases using graph cluster analysis. Therefore, is it possible to identify proteins and pathways related to PCOS using the same approach? METHODS: Known PCOS-related proteins (PCOSrp) from PCOSBase and DisGeNET were integrated with protein-protein interactions (PPI) information from Human Integrated Protein-Protein Interaction reference to construct a PCOS PPI network. The network was clustered with DPClusO algorithm to generate clusters, which were evaluated using Fisher's exact test. Pathway enrichment analysis using gProfileR was conducted to identify significant pathways. RESULTS: The statistical significance of the identified clusters has successfully predicted 138 novel PCOSrp with 61.5% reliability and, based on Cronbach's alpha, this prediction is acceptable. Androgen signalling pathway and leptin signalling pathway were among the significant PCOS-related pathways corroborating the information obtained from the clinical observation, where androgen signalling pathway is responsible in producing male hormones in women with PCOS, whereas leptin signalling pathway is involved in insulin sensitivity. CONCLUSIONS: These results show that graph cluster analysis can provide additional insight into the pathobiology of PCOS, as the pathways identified as statistically significant correspond to earlier biological studies. Therefore, integrative analysis can reveal unknown mechanisms, which may enable the development of accurate diagnosis and effective treatment in PCOS.


Assuntos
Síndrome do Ovário Policístico/metabolismo , Proteínas/metabolismo , Análise por Conglomerados , Bases de Dados de Proteínas , Feminino , Humanos , Síndrome do Ovário Policístico/genética , Proteínas/genética
7.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216618

RESUMO

Based on clinical observations, women with polycystic ovarian syndrome (PCOS) are prone to developing several other diseases, such as metabolic and cardiovascular diseases. However, the molecular association between PCOS and these diseases remains poorly understood. Recent studies showed that the information from protein-protein interaction (PPI) network analysis are useful in understanding the disease association in detail. This study utilized this approach to deepen the knowledge on the association between PCOS and other diseases. A PPI network for PCOS was constructed using PCOS-related proteins (PCOSrp) obtained from PCOSBase. MCODE was used to identify highly connected regions in the PCOS network, known as subnetworks. These subnetworks represent protein families, where their molecular information is used to explain the association between PCOS and other diseases. Fisher's exact test and comorbidity data were used to identify PCOS-disease subnetworks. Pathway enrichment analysis was performed on the PCOS-disease subnetworks to identify significant pathways that are highly involved in the PCOS-disease associations. Migraine, schizophrenia, depressive disorder, obesity, and hypertension, along with twelve other diseases, were identified to be highly associated with PCOS. The identification of significant pathways, such as ribosome biogenesis, antigen processing and presentation, and mitophagy, suggest their involvement in the association between PCOS and migraine, schizophrenia, and hypertension.


Assuntos
Suscetibilidade a Doenças , Síndrome do Ovário Policístico/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Biomarcadores , Biologia Computacional/métodos , Feminino , Humanos , Síndrome do Ovário Policístico/etiologia , Transdução de Sinais
8.
ScientificWorldJournal ; 2014: 840592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24678279

RESUMO

Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of ß -sesquiphellandrene.


Assuntos
Proteínas de Plantas/metabolismo , Polygonum/enzimologia , Sesquiterpenos/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Cinamatos/farmacologia , DNA Complementar/química , DNA Complementar/genética , Ordem dos Genes , Vetores Genéticos , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polygonum/classificação , Polygonum/efeitos dos fármacos , Polygonum/genética , Conformação Proteica , Alinhamento de Sequência
9.
PLoS One ; 19(1): e0297759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266027

RESUMO

Shrimp aquaculture contributes significantly to global economic growth, and the whiteleg shrimp, Penaeus vannamei, is a leading species in this industry. However, Vibrio parahaemolyticus infection poses a major challenge in ensuring the success of P. vannamei aquaculture. Despite its significance in this industry, the biological knowledge of its pathogenesis remains unclear. Hence, this study was conducted to identify the interaction sites and binding affinity between several immune-related proteins of P. vannamei with V. parahaemolyticus proteins associated with virulence factors. Potential interaction sites and the binding affinity between host and pathogen proteins were identified using molecular docking and dynamics (MD) simulation. The P. vannamei-V. parahaemolyticus protein-protein interaction of Complex 1 (Ferritin-HrpE/YscL family type III secretion apparatus protein), Complex 2 (Protein kinase domain-containing protein-Chemotaxis CheY protein), and Complex 3 (GPCR-Chemotaxis CheY protein) was found to interact with -4319.76, -5271.39, and -4725.57 of the docked score and the formation of intermolecular bonds at several interacting residues. The docked scores of Complex 1, Complex 2, and Complex 3 were validated using MD simulation analysis, which revealed these complexes greatly contribute to the interactions between P. vannamei and V. parahaemolyticus proteins, with binding free energies of -22.50 kJ/mol, -30.20 kJ/mol, and -26.27 kJ/mol, respectively. This finding illustrates the capability of computational approaches to search for molecular binding sites between host and pathogen, which could increase the knowledge of Vibrio spp. infection on shrimps, which then can be used to assist in the development of effective treatment.


Assuntos
Decápodes , Penaeidae , Vibrio parahaemolyticus , Animais , Simulação de Acoplamento Molecular , Simulação por Computador
10.
Mol Biol Rep ; 40(3): 2231-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23187733

RESUMO

The importance of plant secondary metabolites for both mankind and the plant itself has long been established. However, despite extensive research on plant secondary metabolites, plant secondary metabolism and its regulation still remained poorly characterized. In this present study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) transcript profiling was applied to generate the expression profiles of Polygonum minus in response to salicylic acid (SA) and methyl jasmonate (MeJA) elicitations. This study reveals two different sets of genes induced by SA and MeJA, respectively where stress-related genes were proved to lead to the expression of genes involved in plant secondary metabolite biosynthetic pathways. A total of 98 transcript-derived fragments (TDFs) were up-regulated, including 46 from SA-treated and 52 from MeJA-treated samples. The cDNA-AFLP transcripts generated using 64 different Mse1/Taq1 primer combinations showed that treatments with SA and MeJA induced genes mostly involved in scavenging reactive oxygen species, including zeaxanthin epoxidase, cytosolic ascorbate peroxidase 1 and peroxidase. Of these stress-related genes, 15 % of other annotated TDFs are involved mainly in secondary metabolic processes where among these, two genes encoding (+)-delta cadinene synthase and cinnamoyl-CoA reductase were highlighted.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Polygonum/efeitos dos fármacos , Polygonum/genética , Ácido Salicílico/farmacologia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fenótipo , Folhas de Planta , Transcrição Gênica
11.
Insects ; 14(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367319

RESUMO

Metisa plana Walker (Lepidoptera: Psychidae) is a major oil palm pest species distributed across Southeast Asia. M. plana outbreaks are regarded as serious ongoing threats to the oil palm industry due to their ability to significantly reduce fruit yield and subsequent productivity. Currently, conventional pesticide overuses may harm non-target organisms and severely pollute the environment. This study aims to identify key regulatory genes involved in hormone pathways during the third instar larvae stage of M. plana gene co-expression network analysis. A weighted gene co-expression network analysis (WGCNA) was conducted on the M. plana transcriptomes to construct a gene co-expression network. The transcriptome datasets were obtained from different development stages of M. plana, i.e., egg, third instar larvae, pupa, and adult. The network was clustered using the DPClusO algorithm and validated using Fisher's exact test and receiver operating characteristic (ROC) analysis. The clustering analysis was performed on the network and 20 potential regulatory genes (such as MTA1-like, Nub, Grn, and Usp) were identified from ten top-most significant clusters. Pathway enrichment analysis was performed to identify hormone signalling pathways and these pathways were identified, i.e., hormone-mediated signalling, steroid hormone-mediated signalling, and intracellular steroid hormone receptor signalling as well as six regulatory genes Hnf4, Hr4, MED14, Usp, Tai, and Trr. These key regulatory genes have a potential as important targets in future upstream applications and validation studies in the development of biorational pesticides against M. plana and the RNA interference (RNAi) gene silencing method.

12.
Int J Mol Sci ; 13(3): 2692-2706, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489118

RESUMO

P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.


Assuntos
Vias Biossintéticas/genética , Etiquetas de Sequências Expressas/metabolismo , Flavonoides/biossíntese , Polygonum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real
13.
Iran J Biotechnol ; 20(1): e3020, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35891960

RESUMO

Context: Cymbidium mosaic virus (CymMV) is one of the most devastating viruses causing losses in the orchid industry, affecting economies worth millions of US dollars. CymMV significantly affects the orchid population and could be controlled through an integrated management strategy consisting of virus detection, good sanitation care of gardeners and their tools, and maintaining virus-free explants. Evidence acquisition: This review was written based on research publications relevant to the CymMV infection in orchids. The literature cited were obtained from online literature databases such as web of Science, Scopus, and Google Scholar. The searched term used was "Cymbidium mosaic virus". Related publications to the initial search were also examined. Results & Conclusions: This review describes the threat of CymMV to the orchid population by examining its history, genome organization, symptoms on individual orchids, detection, and management. Current research has been focusing on the prospect of transgenic orchids with viral resistance. This review also highlights the potential role of the symbiotic relationship between orchids and arbuscular mycorrhiza fungi that could be useful to improve the protection of orchids against virus infection. Overall, this review provides information on how CymMV infection impacts the orchid population.

14.
Life (Basel) ; 12(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35330077

RESUMO

Several species in Brassicaceae produce glucosinolates (GSLs) to protect themselves against pests. As demonstrated in A. thaliana, the reallocation of defence compounds, of which GSLs are a major part, is highly dependent on transport processes and serves to protect high-value tissues such as reproductive tissues. This study aimed to identify potential GSL-transporter proteins (TPs) using a network-biology approach. The known A. thaliana GSL genes were retrieved from the literature and pathway databases and searched against several co-expression databases to generate a gene network consisting of 1267 nodes and 14,308 edges. In addition, 1151 co-expressed genes were annotated, integrated, and visualised using relevant bioinformatic tools. Based on three criteria, 21 potential GSL genes encoding TPs were selected. The AST68 and ABCG40 potential GSL TPs were chosen for further investigation because their subcellular localisation is similar to that of known GSL TPs (SULTR1;1 and SULTR1;2) and ABCG36, respectively. However, AST68 was selected for a molecular-docking analysis using AutoDOCK Vina and AutoDOCK 4.2 with the generated 3D model, showing that both domains were well superimposed on the homologs. Both molecular-docking tools calculated good binding-energy values between the sulphate ion and Ser419 and Val172, with the formation of hydrogen bonds and van der Waals interactions, respectively, suggesting that AST68 was one of the sulphate transporters involved in GSL biosynthesis. This finding illustrates the ability to use computational analysis on gene co-expression data to screen and characterise plant TPs on a large scale to comprehensively elucidate GSL metabolism in A. thaliana. Most importantly, newly identified potential GSL transporters can serve as molecular tools in improving the nutritional value of crops.

15.
Plant Methods ; 18(1): 118, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335358

RESUMO

BACKGROUND: Phytochemicals or secondary metabolites are low molecular weight organic compounds with little function in plant growth and development. Nevertheless, the metabolite diversity govern not only the phenetics of an organism but may also inform the evolutionary pattern and adaptation of green plants to the changing environment. Plant chemoinformatics analyzes the chemical system of natural products using computational tools and robust mathematical algorithms. It has been a powerful approach for species-level differentiation and is widely employed for species classifications and reinforcement of previous classifications. RESULTS: This study attempts to classify Angiosperms using plant sulfur-containing compound (SCC) or sulphated compound information. The SCC dataset of 692 plant species were collected from the comprehensive species-metabolite relationship family (KNApSAck) database. The structural similarity score of metabolite pairs under all possible combinations (plant species-metabolite) were determined and metabolite pairs with a Tanimoto coefficient value > 0.85 were selected for clustering using machine learning algorithm. Metabolite clustering showed association between the similar structural metabolite clusters and metabolite content among the plant species. Phylogenetic tree construction of Angiosperms displayed three major clades, of which, clade 1 and clade 2 represented the eudicots only, and clade 3, a mixture of both eudicots and monocots. The SCC-based construction of Angiosperm phylogeny is a subset of the existing monocot-dicot classification. The majority of eudicots present in clade 1 and 2 were represented by glucosinolate compounds. These clades with SCC may have been a mixture of ancestral species whilst the combinatorial presence of monocot-dicot in clade 3 suggests sulphated-chemical structure diversification in the event of adaptation during evolutionary change. CONCLUSIONS: Sulphated chemoinformatics informs classification of Angiosperms via machine learning technique.

16.
PeerJ ; 10: e14168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518265

RESUMO

Background: Pea eggplant (Solanum torvum Swartz) commonly known as turkey berry or 'terung pipit' in Malay is a vegetable plant widely consumed by the local community in Malaysia. The shrub bears pea-like turkey berry fruits (TBFs), rich in phytochemicals of medicinal interest. The TBF phytochemicals hold a wide spectrum of pharmacological properties. In this study, the TBF phytochemicals' potential inhibitory properties were evaluated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of the Coronavirus disease 2019 (COVID-19). The TBF polyphenols were screened against SARS-CoV receptors via molecular docking and the best receptor-ligand complex was validated further by molecular dynamics (MD) simulation. Method: The SARS-CoV receptor structure files (viral structural components) were retrieved from the Protein Data Bank (PDB) database: membrane protein (PDB ID: 3I6G), main protease (PDB ID: 5RE4), and spike glycoproteins (PDB ID: 6VXX and 6VYB). The receptor binding pocket regions were identified by Discovery Studio (BIOVIA) for targeted docking with TBF polyphenols (genistin, kaempferol, mellein, rhoifolin and scutellarein). The ligand and SARS-CoV family receptor structure files were pre-processed using the AutoDock tools. Molecular docking was performed with the Lamarckian genetic algorithm using AutoDock Vina 4.2 software. The best pose (ligand-receptor complex) from the molecular docking analysis was selected based on the minimum binding energy (MBE) and extent of structural interactions, as indicated by BIOVIA visualization tool. The selected complex was validated by a 100 ns MD simulation run using the GROMACS software. The dynamic behaviour and stability of the receptor-ligand complex were evaluated by the root mean square displacement (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), solvent accessible surface volume (SASV) and number of hydrogen bonds. Results: At RMSD = 0, the TBF polyphenols showed fairly strong physical interactions with SARS-CoV receptors under all possible combinations. The MBE of TBF polyphenol-bound SARS CoV complexes ranged from -4.6 to -8.3 kcal/mol. Analysis of the structural interactions showed the presence of hydrogen bonds, electrostatic and hydrophobic interactions between the receptor residues (RR) and ligands atoms. Based on the MBE values, the 3I6G-rhoifolin (MBE = -8.3 kcal/mol) and 5RE4-genistin (MBE = -7.6 kcal/mol) complexes were ranked with the least value. However, the latter showed a greater extent of interactions between the RRs and the ligand atoms and thus was further validated by MD simulation. The MD simulation parameters of the 5RE4-genistin complex over a 100 ns run indicated good structural stability with minimal flexibility within genistin binding pocket region. The findings suggest that S. torvum polyphenols hold good therapeutics potential in COVID-19 management.


Assuntos
COVID-19 , Solanum melongena , Polifenóis/farmacologia , Pisum sativum , Ligantes , Simulação de Acoplamento Molecular , SARS-CoV-2 , Flavonoides/farmacologia
17.
Plants (Basel) ; 11(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235479

RESUMO

In higher plants, the complexity of a system and the components within and among species are rapidly dissected by omics technologies. Multi-omics datasets are integrated to infer and enable a comprehensive understanding of the life processes of organisms of interest. Further, growing open-source datasets coupled with the emergence of high-performance computing and development of computational tools for biological sciences have assisted in silico functional prediction of unknown genes, proteins and metabolites, otherwise known as uncharacterized. The systems biology approach includes data collection and filtration, system modelling, experimentation and the establishment of new hypotheses for experimental validation. Informatics technologies add meaningful sense to the output generated by complex bioinformatics algorithms, which are now freely available in a user-friendly graphical user interface. These resources accentuate gene function prediction at a relatively minimal cost and effort. Herein, we present a comprehensive view of relevant approaches available for system-level gene function prediction in the plant kingdom. Together, the most recent applications and sought-after principles for gene mining are discussed to benefit the plant research community. A realistic tabulation of plant genomic resources is included for a less laborious and accurate candidate gene discovery in basic plant research and improvement strategies.

18.
Sci Rep ; 12(1): 13829, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970910

RESUMO

Sulfur is an essential element required for plant growth and development, physiological processes and stress responses. Sulfur-encoding biosynthetic genes are involved in the primary sulfur assimilation pathway, regulating various mechanisms at the gene, cellular and system levels, and in the biosynthesis of sulfur-containing compounds (SCCs). In this study, the SCC-encoding biosynthetic genes in rice were identified using a sulfur-dependent model plant, the Arabidopsis. A total of 139 AtSCC from Arabidopsis were used as reference sequences in search of putative rice SCCs. At similarity index > 30%, the similarity search against Arabidopsis SCC query sequences identified 665 putative OsSCC genes in rice. The gene synteny analysis showed a total of 477 syntenic gene pairs comprised of 89 AtSCC and 265 OsSCC biosynthetic genes in Arabidopsis and rice, respectively. Phylogenetic tree of the collated (AtSCCs and OsSCCs) SCC-encoding biosynthetic genes were divided into 11 different clades of various sizes comprised of branches of subclades. In clade 1, nearing equal representation of OsSCC and AtSCC biosynthetic genes imply the most ancestral lineage. A total of 25 candidate Arabidopsis SCC homologs were identified in rice. The gene ontology enrichment analysis showed that the rice-Arabidopsis SCC homologs were significantly enriched in the following terms at false discovery rate (FDR) < 0.05: (i) biological process; sulfur compound metabolic process and organic acid metabolic processes, (ii) molecular function; oxidoreductase activity, acting on paired donors with incorporation or reduction of molecular oxygen and (iii) KEGG pathway; metabolic pathways and biosynthesis of secondary metabolites. At less than five duplicated blocks of separation, no tandem duplications were observed among the SCC biosynthetic genes distributed in rice chromosomes. The comprehensive rice SCC gene description entailing syntenic events with Arabidopsis, motif distribution and chromosomal mapping of the present findings offer a foundation for rice SCC gene functional studies and advanced strategic rice breeding.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta/genética , Família Multigênica , Oryza/genética , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Plantas/genética , Enxofre
19.
Life (Basel) ; 12(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35629318

RESUMO

Protein-protein interaction (PPI) is involved in every biological process that occurs within an organism. The understanding of PPI is essential for deciphering the cellular behaviours in a particular organism. The experimental data from PPI methods have been used in constructing the PPI network. PPI network has been widely applied in biomedical research to understand the pathobiology of human diseases. It has also been used to understand the plant physiology that relates to crop improvement. However, the application of the PPI network in aquaculture is limited as compared to humans and plants. This review aims to demonstrate the workflow and step-by-step instructions for constructing a PPI network using bioinformatics tools and PPI databases that can help to predict potential interaction between proteins. We used zebrafish proteins, the oestrogen receptors (ERs) to build and analyse the PPI network. Thus, serving as a guide for future steps in exploring potential mechanisms on the organismal physiology of interest that ultimately benefit aquaculture research.

20.
Life (Basel) ; 12(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35743803

RESUMO

Colorectal cancer (CRC) ranks second among the most commonly occurring cancers in Malaysia, and unfortunately, its pathobiology remains unknown. CRC pathobiology can be understood in detail with the implementation of omics technology that is able to generate vast amounts of molecular data. The generation of omics data has introduced a new challenge for data organization. Therefore, a knowledge-based repository, namely TCGA-My, was developed to systematically store and organize CRC omics data for Malaysian patients. TCGA-My stores the genome and metabolome of Malaysian CRC patients. The genome and metabolome datasets were organized using a Python module, pandas. The variants and metabolites were first annotated with their biological information using gene ontologies (GOs) vocabulary. The TCGA-My relational database was then built using HeidiSQL PorTable 9.4.0.512, and Laravel was used to design the web interface. Currently, TCGA-My stores 1,517,841 variants, 23,695 genes, and 167,451 metabolites from the samples of 50 CRC patients. Data entries can be accessed via search and browse menus. TCGA-My aims to offer effective and systematic omics data management, allowing it to become the main resource for Malaysian CRC research, particularly in the context of biomarker identification for precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA