Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 38(11): 6074-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22047372

RESUMO

PURPOSE: A radiochromic film based dosimetry system for high dose rate (HDR) Iridium-192 brachytherapy source was described. A comparison between calibration curves established in water and Solid Water™ was provided. METHODS: Pieces of EBT-2 model GAFCHROMIC™ film were irradiated in both water and Solid Water™ with HDR (192)Ir brachytherapy source in a dose range from 0 to 50 Gy. Responses of EBT-2 GAFCHROMIC™ film were compared for irradiations in water and Solid Water™ by scaling the dose between media through Monte Carlo calculated conversion factor for both setups. To decrease uncertainty in dose delivery due to positioning of the film piece with respect to the radiation source, traceable calibration irradiations were performed in a parallel-opposed beam setup. RESULTS: The EBT-2 GAFCHROMIC™ film based dosimetry system described in this work can provide an overall one-sigma dose uncertainty of 4.12% for doses above 1 Gy. The ratio of dose delivered to the sensitive layer of the film in water to the dose delivered to the sensitive layer of the film in Solid Water™ was calculated using Monte Carlo simulations to be 0.9941 ± 0.0007. CONCLUSIONS: A radiochromic film based dosimetry system using only the green color channel of a flatbed document scanner showed superior precision if used alone in a dose range that extends up to 50 Gy, which greatly decreases the complexity of work. In addition, Solid Water™ material was shown to be a viable alternative to water in performing radiochromic film based dosimetry with HDR (192)Ir brachytherapy sources.


Assuntos
Dosimetria Fotográfica/métodos , Radioisótopos de Irídio/uso terapêutico , Radioterapia/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Incerteza
2.
Med Phys ; 37(7): 3687-93, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20831076

RESUMO

PURPOSE: The authors present results of the measurements on the impact of radiochromic film immersion in water. The impact of film piece size, initial optical density, postimmersion waiting time prior to scanning, and the time film was kept in water has been investigated. The authors also investigated the pathways of water penetration into the film during the film immersion in water. METHODS: To study the impact of water immersion on change in optical density, the authors used various sizes of the latest EBT-2 model GAFCHROMICTM film: 2 x 2, 4 x 4, and 8 x 8 in.2. In addition, to test any existing dependence of the film's optical density on water diffusion, the authors used two sets of films: Unexposed (0 Gy) and film pieces exposed to a dose of 3 Gy. Times that film pieces were left in water ranged from 30 min to 24 h, and once the film was permanently removed from water, the authors also studied the impact of the scanning time (deltat) that ranged from 0 (films scanned right after removal from water) to 72 h postimmersion. RESULTS: While the penetration depth can reach as much as 9 mm around the edges of the EBT-2 GAFCHROMIC film, the anticipated dose error due to the change in optical density due to the water immersion appears to be negligible for the short immersions of the order of 30 min. However, as the immersion time increases, the anticipated dose error may reach 22 cGy on a 2 x 2 in.2 piece of film, which corresponds to 7% dose error at 3 Gy of measured dose. CONCLUSIONS: In this work, the authors report on an undoubted impact of radiochromic film immersion in water on the measured change in optical density, which may lead to systematic errors in dose measurements if the film is kept in water for longer periods of time. The magnitude of the impact depends on many parameters: Size of the film piece, initial optical density, postimmersion waiting time prior to scanning (defined by the current radiochromic film dosimetry protocol in. place), and the time film was kept in water. The authors also suggested various approaches in correcting for the change in netOD due to water penetration into the film, but the authors believe that the use of the control film piece would be the most appropriate.


Assuntos
Radiometria/métodos , Água , Absorção , Imersão , Fenômenos Ópticos , Análise Espectral
3.
Med Phys ; 37(5): 2207-14, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20527554

RESUMO

PURPOSE: One of the major drawbacks of the current radiochromic film dosimetry protocols is the postirradiation waiting time. In this article, the authors study the postirradiation time evolution of the absorption spectrum of radiochromic EBT-2 GAFCHROMIC film model. METHODS: Postirradiation scanning times range from 3 min to 5 days and a dose range extends from 0 to 6 Gy. The authors compare the results of absorption spectra measurements for the latest GAFCHROMIC EBT-2 film model to the absorption spectra of the previous EBT GAFCHROMIC film model. The authors also describe a method that can establish the time error constraints on the postirradiation scanning time that will still provide an acceptable dose error for clinical applications if the protocol employing the shorter postirradiation scanning time is implemented in the clinic. RESULTS: The two film models experience the very same dose change in net absorbance with sensitivity of the latest EBT-2 model GAFCHROMIC film being slightly lower than its predecessor. The authors show that for two postirradiation scanning times of 30 min and 24 h, the 1% dose error can be achieved if the scanning time window is less than +/- 5 min and +/- 2 h, respectively. CONCLUSIONS: By comparing the resultant change in net absorbance between the latest EBT-2 and previous EBT GAFCHROMIC film models, the authors conclude that the addition of the yellow marker dye to the sensitive layer does not affect dosimetric properties of the latest film model. The authors also describe a procedure by which one can establish an acceptable time window around chosen postirradiation scanning time protocol that would provide an acceptable dose error for practical purposes.


Assuntos
Dosimetria Fotográfica/métodos , Modelos Teóricos , Absorção , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Análise Espectral , Fatores de Tempo
4.
Br J Radiol ; 89(1062): 20150388, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27007269

RESUMO

OBJECTIVE: Integration of fluorine-18 fludeoxyglucose ((18)F-FDG)-positron emission tomography (PET) functional data into conventional anatomically based gross tumour volume delineation may lead to optimization of dose to biological target volumes (BTV) in radiotherapy. We describe a method for defining tumour subvolumes using (18)F-FDG-PET data, based on the decomposition of differential uptake volume histograms (dUVHs). METHODS: For 27 patients with histopathologically proven non-small-cell lung carcinoma (NSCLC), background uptake values were sampled within the healthy lung contralateral to a tumour in those image slices containing tumour and then scaled by the ratio of mass densities between the healthy lung and tumour. Signal-to-background (S/B) uptake values within volumes of interest encompassing the tumour were used to reconstruct the dUVHs. These were subsequently decomposed into the minimum number of analytical functions (in the form of differential uptake values as a function of S/B) that yielded acceptable net fits, as assessed by χ(2) values. RESULTS: Six subvolumes consistently emerged from the fitted dUVHs over the sampled volume of interest on PET images. Based on the assumption that each function used to decompose the dUVH may correspond to a single subvolume, the intersection between the two adjacent functions could be interpreted as a threshold value that differentiates them. Assuming that the first two subvolumes spread over the tumour boundary, we concentrated on four subvolumes with the highest uptake values, and their S/B thresholds [mean ± standard deviation (SD)] were 2.88 ± 0.98, 4.05 ± 1.55, 5.48 ± 2.06 and 7.34 ± 2.89 for adenocarcinoma, 3.01 ± 0.71, 4.40 ± 0.91, 5.99 ± 1.31 and 8.17 ± 2.42 for large-cell carcinoma and 4.54 ± 2.11, 6.46 ± 2.43, 8.87 ± 5.37 and 12.11 ± 7.28 for squamous cell carcinoma, respectively. CONCLUSION: (18)F-FDG-based PET data may potentially be used to identify BTV within the tumour in patients with NSCLC. Using the one-way analysis of variance statistical tests, we found a significant difference among all threshold levels among adenocarcinomas, large-cell carcinoma and squamous cell carcinomas. On the other hand, the observed significant variability in threshold values throughout the patient cohort (expressed as large SDs) can be explained as a consequence of differences in the physiological status of the tumour volume for each patient at the time of the PET/CT scan. This further suggests that patient-specific threshold values for the definition of BTVs could be determined by creation and curve fitting of dUVHs on a patient-by-patient basis. ADVANCES IN KNOWLEDGE: The method of (18)F-FDG-PET-based dUVH decomposition described in this work may lead to BTV segmentation in tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fluordesoxiglucose F18/farmacocinética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Biológicos , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA