RESUMO
Hyperlipidaemia is a major risk factor of atherosclerotic cardiovascular disease (ASCVD). Risk of cardiovascular events depends on cumulative lifetime exposure to low-density lipoprotein cholesterol (LDL-C) and, independently, on the time course of exposure to LDL-C, with early exposure being associated with a higher risk1. Furthermore, LDL-C fluctuations are associated with ASCVD outcomes2-4. However, the precise mechanisms behind this increased ASCVD risk are not understood. Here we find that early intermittent feeding of mice on a high-cholesterol Western-type diet (WD) accelerates atherosclerosis compared with late continuous exposure to the WD, despite similar cumulative circulating LDL-C levels. We find that early intermittent hyperlipidaemia alters the number and homeostatic phenotype of resident-like arterial macrophages. Macrophage genes with altered expression are enriched for genes linked to human ASCVD in genome-wide association studies. We show that LYVE1+ resident macrophages are atheroprotective, and identify biological pathways related to actin filament organization, of which alteration accelerates atherosclerosis. Using the Young Finns Study, we show that exposure to cholesterol early in life is significantly associated with the incidence and size of carotid atherosclerotic plaques in mid-adulthood. In summary, our results identify early intermittent exposure to cholesterol as a strong determinant of accelerated atherosclerosis, highlighting the importance of optimal control of hyperlipidaemia early in life, and providing insights into the underlying biological mechanisms. This knowledge will be essential to designing effective therapeutic strategies to combat ASCVD.
Assuntos
Aterosclerose , Dieta Ocidental , Hiperlipidemias , Macrófagos , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Aterosclerose/epidemiologia , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Dieta Ocidental/estatística & dados numéricos , Finlândia/epidemiologia , Estudo de Associação Genômica Ampla , Hiperlipidemias/complicações , Hiperlipidemias/epidemiologia , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Incidência , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Fenótipo , Placa Aterosclerótica/epidemiologia , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Fatores de TempoRESUMO
Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Progressão da Doença , Gânglios Espinais , Gânglios Simpáticos , Camundongos , Neurônios/fisiologia , Placa Aterosclerótica/prevenção & controleRESUMO
The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.
Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Coração , Neurônios/fisiologia , EncéfaloRESUMO
Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe(-/-) mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4(+) T cells, generated CD4(+), CD8(+), T regulatory (Treg) effector and central memory cells, converted naive CD4(+) T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin ß receptors (VSMC-LTßRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTßRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe(-/-)Ltbr(-/-) and to a similar extent in aged Apoe(-/-)Ltbr(fl/fl)Tagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTßRs participate in atherosclerosis protection via ATLOs.
Assuntos
Envelhecimento/imunologia , Aterosclerose/imunologia , Receptor beta de Linfotoxina/metabolismo , Miócitos de Músculo Liso/fisiologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Túnica Adventícia/imunologia , Envelhecimento/genética , Animais , Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Diferenciação Celular/genética , Movimento Celular/genética , Células Cultivadas , Coristoma/imunologia , Memória Imunológica , Ativação Linfocitária/genética , Tecido Linfoide/imunologia , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genéticaRESUMO
OBJECTIVE: Explore aorta B-cell immunity in aged apolipoprotein E-deficient (ApoE(-/-)) mice. APPROACH AND RESULTS: Transcript maps, fluorescence-activated cell sorting, immunofluorescence analyses, cell transfers, and Ig-ELISPOT (enzyme-linked immunospot) assays showed multilayered atherosclerosis B-cell responses in artery tertiary lymphoid organs (ATLOs). Aging-associated aorta B-cell-related transcriptomes were identified, and transcript atlases revealed highly territorialized B-cell responses in ATLOs versus atherosclerotic lesions: ATLOs showed upregulation of bona fide B-cell genes, including Cd19, Ms4a1 (Cd20), Cd79a/b, and Ighm although intima plaques preferentially expressed molecules involved in non-B effector responses toward B-cell-derived mediators, that is, Fcgr3 (Cd16), Fcer1g (Cd23), and the C1q family. ATLOs promoted B-cell recruitment. ATLO B-2 B cells included naive, transitional, follicular, germinal center, switched IgG1(+), IgA(+), and IgE(+) memory cells, plasmablasts, and long-lived plasma cells. ATLOs recruited large numbers of B-1 cells whose subtypes were skewed toward interleukin-10(+) B-1b cells versus interleukin-10(-) B-1a cells. ATLO B-1 cells and plasma cells constitutively produced IgM and IgG and a fraction of plasma cells expressed interleukin-10. Moreover, ApoE(-/-) mice showed increased germinal center B cells in renal lymph nodes, IgM-producing plasma cells in the bone marrow, and higher IgM and anti-MDA-LDL (malondialdehyde-modified low-density lipoprotein) IgG serum titers. CONCLUSIONS: ATLOs orchestrate dichotomic, territorialized, and multilayered B-cell responses in the diseased aorta; germinal center reactions indicate generation of autoimmune B cells within the diseased arterial wall during aging.
Assuntos
Envelhecimento/imunologia , Aorta/imunologia , Doenças da Aorta/imunologia , Apolipoproteínas E/deficiência , Aterosclerose/imunologia , Linfócitos B/imunologia , Estruturas Linfoides Terciárias/imunologia , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Autoanticorpos/sangue , Autoimunidade , Linfócitos B/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Predisposição Genética para Doença , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunoglobulinas/sangue , Memória Imunológica , Lipoproteínas LDL/imunologia , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Malondialdeído/análogos & derivados , Malondialdeído/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Transdução de Sinais , Estruturas Linfoides Terciárias/metabolismo , Estruturas Linfoides Terciárias/patologia , TranscriptomaRESUMO
Two pairs of biological systems acting over long distances have recently been defined as major participants in the regulation of physiological and pathological tissue reactions: i) the nervous and vascular systems form various blood-brain barriers and control axon growth and angiogenesis; and ii) the nervous and immune systems emerge as key players to direct immune responses and maintain blood vessel integrity. The two pairs have been explored by investigators in relatively independent research areas giving rise to the concepts of the rapidly expanding topics of the neurovascular link and neuroimmunology, respectively. Our recent studies on atherosclerosis led us to consider a more inclusive approach by conceptualizing and combining principles of the neurovascular link and neuroimmunology: we propose that the nervous system, the immune system and the cardiovascular system undergo complex crosstalks in tripartite rather than bipartite interactions to form neuroimmune cardiovascular interfaces (NICIs).
RESUMO
Three systemic biological systems, i.e., the nervous, the immune, and the cardiovascular systems, form a mutually responsive and forward-acting tissue network to regulate acute and chronic cardiovascular function in health and disease. Two sub-circuits within the cardiovascular system have been described, the artery brain circuit (ABC) and the heart brain circuit (HBC), forming a large cardiovascular brain circuit (CBC). Likewise, the nervous system consists of the peripheral nervous system and the central nervous system with their functional distinct sensory and effector arms. Moreover, the immune system with its constituents, i.e., the innate and the adaptive immune systems, interact with the CBC and the nervous system at multiple levels. As understanding the structure and inner workings of the CBC gains momentum, it becomes evident that further research into the CBC may lead to unprecedented classes of therapies to treat cardiovascular diseases as multiple new biologically active molecules are being discovered that likely affect cardiovascular disease progression. Here, we weigh the merits of integrating these recent observations in cardiovascular neurobiology into previous views of cardiovascular disease pathogeneses. These considerations lead us to propose the Neuroimmune Cardiovascular Circuit Hypothesis.
Assuntos
Doenças Cardiovasculares , Depressores do Sistema Nervoso Central , Humanos , Neuroimunomodulação , Sistema Nervoso Central , Coração , Depressores do Sistema Nervoso Central/farmacologia , ArtériasRESUMO
Atherosclerotic plaques form in the inner layer of arteries triggering heart attacks and strokes. Although T cells have been detected in atherosclerosis, tolerance dysfunction as a disease driver remains unexplored. Here we examine tolerance checkpoints in atherosclerotic plaques, artery tertiary lymphoid organs and lymph nodes in mice burdened by advanced atherosclerosis, via single-cell RNA sequencing paired with T cell antigen receptor sequencing. Complex patterns of deteriorating peripheral T cell tolerance were observed being most pronounced in plaques followed by artery tertiary lymphoid organs, lymph nodes and blood. Affected checkpoints included clonal expansion of CD4+, CD8+ and regulatory T cells; aberrant tolerance-regulating transcripts of clonally expanded T cells; T cell exhaustion; Treg-TH17 T cell conversion; and dysfunctional antigen presentation. Moreover, single-cell RNA-sequencing profiles of human plaques revealed that the CD8+ T cell tolerance dysfunction observed in mouse plaques was shared in human coronary and carotid artery plaques. Thus, our data support the concept of atherosclerosis as a bona fide T cell autoimmune disease targeting the arterial wall.
RESUMO
Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.
Assuntos
Envelhecimento , Senescência Celular , Coração , MicroRNAs , Densidade Microvascular , Miocárdio , Semaforina-3A , Coração/inervação , Microcirculação , MicroRNAs/genética , MicroRNAs/metabolismo , Semaforina-3A/genética , Animais , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Masculino , Camundongos Endogâmicos C57BL , Senescência Celular/genética , Miocárdio/patologia , AxôniosRESUMO
We recently identified a high-affinity C1q-ApoE complex in human artery atherosclerotic intima lesions and in human amyloid plaques of Alzheimer's Disease brains defining a common pathogenetic pathway of two diverse diseases, i.e. atherosclerosis and dementia. C1q is the initiating and controlling protein of the classical complement cascade (CCC), which occupies a key role in multiple acute and chronic inflammatory tissue responses. C1q is largely produced by myeloid cells including Kupffer cells (KCs) and subsequently secreted into the circulation as an inactive preprotein. Its binding partner, Apolipoprotein E (ApoE), is produced by KCs and hepatocytes and it is also secreted into the circulation, where it regulates essential steps of lipid transport. In addition to its major source, ApoE can be produced by non-liver cells including immune cells and multiple other cells depending on local tissue contexts. To initiate the CCC cascade, C1q must be activated by molecules as varied as oxidized lipids, amyloid fibrils, and immune complexes. However, ApoE is mute towards inactive C1q but binds at high-affinity to its activated form. Specifically, our studies revealed that ApoE is a CCC-specific checkpoint inhibitor via the formation of the C1q-ApoE complex. We proposed that it may arise in multiple if not all CCC-associated diseases and that its presence indicates ongoing CCC activity. Here, we turned to the liver to examine C1q-ApoE complexes in human B- and C-viral hepatitis and nonalcoholic fatty liver disease (NAFLD). In addition, we used multidrug-resistance-2 gene-knockout (Mdr2-KO) mice as a model for inflammatory liver disease and hepatocellular carcinoma (HCC) pathogenesis. In normal murine and human livers, KCs were the major C1q-producing cell type while hepatocytes were the primary ApoE-forming cell type though the C1q-ApoE complex was rare or nonexistent. However, significant numbers of C1q-ApoE complexes formed in both Mdr2-KO, human viral hepatitis, and NAFLD around portal triads where immune cells had infiltrated the liver. Additionally, high numbers of C1q-ApoE complexes emerged in human livers in areas of extracellular lipid droplets across the entire liver parenchyma in NAFLD-affected patients. Thus, the C1q-ApoE complex is a new pathological hallmark of viral hepatitis B and C and NAFLD.
Assuntos
Aterosclerose , Carcinoma Hepatocelular , Hepatite Viral Humana , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/patologia , Complemento C1q , Neoplasias Hepáticas/patologia , Apolipoproteínas E , Camundongos Knockout , Aterosclerose/complicaçõesRESUMO
Recent advances in cardiovascular research have led to a more comprehensive understanding of molecular mechanisms of atherosclerosis. It has become apparent that the disease involves three layers of the arterial wall: the intima, the media, and a connective tissue coat termed the adventitia. It is also now appreciated that arteries are surrounded by adipose and neuronal tissues. In addition, adjacent to and within the adventitia, arteries are embedded in a loose connective tissue containing blood vessels (vasa vasora) and lymph vessels, artery-draining lymph nodes and components of the peripheral nervous system, including periarterial nerves and ganglia. During atherogenesis, each of these tissues undergoes marked structural and cellular alterations. We propose that a better understanding of these cell-cell and cell-tissue interactions may considerably advance our understanding of cardiovascular disease pathogenesis. Methods to acquire subcellular optical access to the intact tissues surrounding healthy and diseased arteries are urgently needed to achieve these aims. Tissue clearing is a landmark next-generation, three-dimensional (3D) microscopy technique that allows to image large-scale hitherto inaccessible intact deep tissue compartments. It allows for detailed reconstructions of arteries by a combination of labelling, clearing, advanced microscopies and other imaging and data-analysis tools. Here, we describe two distinct tissue clearing protocols; solvent-based modified three-dimensional imaging of solvent-cleared organs (3DISCO) clearing and another using aqueous-based 2,2'-thiodiethanol (TDE) clearing, both of which complement each other.
Assuntos
Aterosclerose , Imageamento Tridimensional , Artérias , Humanos , Imageamento Tridimensional/métodos , MicroscopiaRESUMO
Vascular smooth muscle cells (VSMCs) constitute the major cells in the media layer of arteries, and are critical to maintain the integrity of the arterial wall. They participate in arterial wall remodeling, and play important roles in atherosclerosis throughout all stages of the disease. Studies demonstrate that VSMCs can adopt numerous phenotypes depending on inputs from endothelial cells (ECs) of the intima, resident cells of the adventitia, circulating immune cells, hormones, and plasma lipoproteins. This plasticity allows them to perform multiple tasks in physiology and disease. In this minireview, we focus on a previously underappreciated activity of VSMCs, i.e., their impact on atherosclerosis immunity via formation of artery tertiary lymphoid organs (ATLOs).
Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Suscetibilidade a Doenças , Imunidade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Túnica Adventícia/imunologia , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Aterosclerose/patologia , Biomarcadores , Plasticidade Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/complicações , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Mediadores da Inflamação/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologiaRESUMO
The role of nonclassical monocytes (NCMs) in health and disease is emerging, but their location and function within tissues remain poorly explored. Imaging of NCMs has been limited by the lack of an established single NCM marker. Here, we characterize the immune checkpoint molecule PD-L1 (CD274) as an unequivocal marker for tracking NCMs in circulation and pinpoint their compartmentalized distribution in tissues by two-photon microscopy. Visualization of PD-L1+ NCMs in relation to bone marrow vasculature reveals that conversion of classical monocytes into NCMs requires contact with endosteal vessels. Furthermore, PD-L1+ NCMs are present in tertiary lymphoid organs (TLOs) under inflammatory conditions in both mice and humans, and NCMs exhibit a PD-L1-dependent immunomodulatory function that promotes T cell apoptosis within TLOs. Our findings establish an unambiguous tool for the investigation of NCMs and shed light on their origin and function.
Assuntos
Antígeno B7-H1/imunologia , Monócitos/imunologia , Músculos Abdominais/imunologia , Animais , Anticorpos/farmacologia , Medula Óssea/imunologia , Feminino , Fêmur , Imunoglobulina G/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/imunologiaRESUMO
In the version of this article originally published, a sentence was erroneously included in the author contributions, and information regarding second shared authorship was missing from the author contributions. The following should not have been included in the author contributions: "C.W. and A.J.R.H. supervised the work presented in Figs. 1, 2, 5, 6; P.Z. and C.S. supervised the work presented in Figs. 3, 4." Additionally, this sentence should have appeared at the beginning of the author contributions: "These authors contributed equally: C.W., P.F.Z., C.S., and A.J.R.H." The errors have been corrected in the print, PDF and HTML versions of the article.
RESUMO
Apolipoprotein-E (ApoE) has been implicated in Alzheimer's disease, atherosclerosis, and other unresolvable inflammatory conditions but a common mechanism of action remains elusive. We found in ApoE-deficient mice that oxidized lipids activated the classical complement cascade (CCC), resulting in leukocyte infiltration of the choroid plexus (ChP). All human ApoE isoforms attenuated CCC activity via high-affinity binding to the activated CCC-initiating C1q protein (KD~140-580 pM) in vitro, and C1q-ApoE complexes emerged as markers for ongoing complement activity of diseased ChPs, Aß plaques, and atherosclerosis in vivo. C1q-ApoE complexes in human ChPs, Aß plaques, and arteries correlated with cognitive decline and atherosclerosis, respectively. Treatment with small interfering RNA (siRNA) against C5, which is formed by all complement pathways, attenuated murine ChP inflammation, Aß-associated microglia accumulation, and atherosclerosis. Thus, ApoE is a direct checkpoint inhibitor of unresolvable inflammation, and reducing C5 attenuates disease burden.
Assuntos
Complexo Antígeno-Anticorpo/imunologia , Apolipoproteínas E/imunologia , Doenças das Artérias Carótidas/imunologia , Plexo Corióideo/imunologia , Disfunção Cognitiva/imunologia , Complemento C1q/imunologia , Via Clássica do Complemento/imunologia , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/imunologia , Animais , Aorta/imunologia , Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/patologia , Encéfalo/imunologia , Encéfalo/patologia , Artérias Carótidas/imunologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/patologia , Plexo Corióideo/patologia , Disfunção Cognitiva/patologia , Complemento C5 , Feminino , Humanos , Leucócitos , Masculino , Camundongos Knockout para ApoE , Microscopia de Fluorescência , Pessoa de Meia-Idade , Placa Amiloide/imunologia , Placa Amiloide/patologia , Isoformas de Proteínas/imunologia , RNA Interferente PequenoRESUMO
Catecholamines stimulate epithelial proliferation, but the role of sympathetic nerve signaling in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. Catecholamines promoted ADRB2-dependent PDAC development, nerve growth factor (NGF) secretion, and pancreatic nerve density. Pancreatic Ngf overexpression accelerated tumor development in LSL-Kras+/G12D;Pdx1-Cre (KC) mice. ADRB2 blockade together with gemcitabine reduced NGF expression and nerve density, and increased survival of LSL-Kras+/G12D;LSL-Trp53+/R172H;Pdx1-Cre (KPC) mice. Therapy with a Trk inhibitor together with gemcitabine also increased survival of KPC mice. Analysis of PDAC patient cohorts revealed a correlation between brain-derived neurotrophic factor (BDNF) expression, nerve density, and increased survival of patients on nonselective ß-blockers. These findings suggest that catecholamines drive a feedforward loop, whereby upregulation of neurotrophins increases sympathetic innervation and local norepinephrine accumulation.
Assuntos
Catecolaminas/farmacologia , Fatores de Crescimento Neural/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Adrenérgicos/farmacologia , Animais , Carcinoma in Situ/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Camundongos Transgênicos , Neoplasias Pancreáticas/patologia , Gencitabina , Neoplasias PancreáticasRESUMO
Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by lipid deposition, plaque formation, and immune cell infiltration. Innate and adaptive immune cells infiltrate the artery during development of the disease. Moreover, advanced disease leads to formation of artery tertiary lymphoid organs in the adventitia (Grabner et al., 2009; Hu et al., 2015). Various and diverse types of immune cells have been identified in the aorta adventitia vs atherosclerotic plaques (Elewa et al., 2016; Galkina et al., 2006; Lotzer et al., 2010; Mohanta et al., 2016; Mohanta et al., 2014; Moos et al., 2005; Srikakulapu et al., 2016; Zhao et al., 2004). There are conflicting reports on the number and subtypes of immune cells in the aorta depending on the age of the animals, the protocol that is used to obtain single cell suspensions, and the dietary conditions of the mice (Campbell et al., 2012; Clement et al., 2015; Galkina et al., 2006; Kyaw et al., 2012). The number of immune cells in the aorta differs as much as tenfold using different protocols (Butcher et al., 2012; Galkina et al., 2006; Gjurich et al., 2015; Grabner et al., 2009; Hu et al., 2015). These discrepant results call for a protocol that robustly documents bona fide aorta cells rather than those in the surrounding tissues or blood. Critical methodological hurdles include the removal of adjacent adipose tissue and small paraaortic lymph nodes lining the entire aortic tree that are not visible by the naked eye. A dissection microscope is therefore recommended. Moreover protocols of aorta preparations should ascertain that lymphocyte aggregates referred to as fat associated lymphoid clusters (FALCs) (Benezech et al., 2015; Elewa et al., 2015) that are often present at the border between the adipose tissue and the adventitia are removed before enzyme digestion. We propose - besides other approaches (Hu et al., 2015; Mohanta et al., 2014) - a combination of immunohistochemical staining and fluorescence activated cell sorter (FACS) analyses from single cell suspensions to quantify the cells of interest. This protocol describes isolation of single cells from mouse aorta for FACS and other analysis.