Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Assist Reprod Genet ; 41(2): 371-383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146030

RESUMO

PURPOSE: Oxidative stress and mitochondrial dysfunction play central roles in reduced oocyte quality and infertility in obese patients. Mitochondria-targeted treatments containing co-enzyme Q10 such as mitoquinone (MitoQ) can increase mitochondrial antioxidative capacity; however, their safety and efficiency when supplemented to oocytes under lipotoxic conditions have not been described. METHODS: We tested the effect of different concentrations of MitoQ or its cationic carrier (TPP) (0, 0.1, 0.5, 1.0 µM each) during bovine oocyte IVM. Then, we tested the protective capacity of MitoQ (0.1 µM) against palmitic acid (PA)-induced lipotoxicity and mitochondrial dysfunction in oocytes. RESULTS: Exposure to MitoQ, or TPP only, at 1 µM significantly (P<0.05) reduced oocyte mitochondrial inner membrane potential (JC-1 staining) and resulted in reduced cleavage and blastocyst rates compared with solvent control. Lower concentrations of MitoQ or TPP had no effects on embryo development under control (PA-free) conditions. As expected, PA increased the levels of MMP and ROS in oocytes (CellROX staining) and reduced cleavage and blastocyst rates compared with the controls (P<0.05). These negative effects were ameliorated by 0.1 µM MitoQ. In contrast, 0.1 µM TPP alone had no protective effects. MitoQ also normalized the expression of HSP10 and TFAM, and partially normalized HSP60 in the produced blastocysts, indicating at least a partial alleviation of PA-induced mitochondrial stress. CONCLUSION: Oocyte exposure to MitoQ may disturb mitochondrial bioenergetic functions and developmental capacity due to a TPP-induced cationic overload. A fine-tuned concentration of MitoQ can protect against lipotoxicity-induced mitochondrial stress during IVM and restore developmental competence and embryo quality.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Doenças Mitocondriais , Compostos Organofosforados , Ubiquinona/análogos & derivados , Humanos , Animais , Bovinos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos , Blastocisto/metabolismo , Desenvolvimento Embrionário , Mitocôndrias/metabolismo
2.
Hum Reprod ; 34(10): 1984-1998, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31625574

RESUMO

STUDY QUESTION: Can we use a mitochondrial-targeted antioxidant (Mitoquinone) during in vitro embryo culture to rescue developmental competence of oocytes matured under lipotoxic conditions, exhibiting mitochondrial dysfunction and oxidative stress? SUMMARY ANSWER: Supplementation of embryo culture media with Mitoquinone reduced oxidative stress and prevented mitochondrial uncoupling in embryos derived from metabolically compromised oocytes in vitro, leading to higher blastocyst rates and lower blastomeric apoptosis. WHAT IS KNOWN ALREADY: Maternal metabolic disorders, such as obesity and type-II diabetes are associated with hyperlipidemia and elevated free fatty acid (FFA) concentrations in the ovarian follicular fluid (FF). Oocyte maturation under these lipotoxic conditions results in increased oxidative stress levels, mitochondrial dysfunction, reduced developmental competence and disappointing IVF results. STUDY DESIGN, SIZE, DURATION: A well-described bovine oocyte IVM model was used, where a pathophysiologically relevant elevated FF concentrations of palmitic acid (PA; 150 µM or 300 µM) were added to induce oxidative stress. After fertilization (Day 0, D0), zygotes were in vitro cultured (IVC, from D1 to D8) in standard fatty acid-free media in the presence or absence of Mitoquinone or its carrier triphenyl-phosphonium. PARTICIPANTS/MATERIALS, SETTING, METHODS: Embryo cleavage and fragmentation (D2) and blastocyst rates (D8) were recorded. Mitochondrial activity and oxidative stress in cleaved embryos at D2 were determined using specific fluorogenic probes and confocal microscopy. D8 blastocysts were used to (i) examine the expression of marker genes related to mitochondrial unfolded protein responses (UPRmt; HSPD1 and HSPE1), mitochondrial biogenesis (TFAM), endoplasmic reticulum (ER) UPR (ATF4, ATF6 and BiP) and oxidative stress (CAT, GPX1 and SOD2) using real time RT-PCR; (ii) determine cell differentiation and apoptosis using CDX-2 and cleaved caspase-3 immunostaining; and (iii) measure mtDNA copy numbers. This was tested in a series of experiments with at least three independent replicates for each, using a total of 2525 oocytes. Differences were considered significant if a P value was <0.05 after Bonferroni correction. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA during IVM followed by culture under control conditions resulted in a significant increase in oxidative stress in embryos at D2. This was associated with a significant reduction in mitochondrial inner membrane potential (uncoupling) compared with solvent control (P < 0.05). The magnitude of these effects was PA-concentration dependent. Consequently, development to the blastocysts stage was significantly hampered. Surviving blastocysts exhibited high apoptotic cell indices and upregulated mRNA expression indicating persistent oxidative stress, mitochondrial and ER UPRs. In contrast, supplementation of PA-derived zygotes with Mitoquinone during IVC (i) prevented mitochondrial uncoupling and alleviated oxidative stress at D2; and (ii) rescued blastocyst quality; normalized oxidative stress and UPR related genes and apoptotic cell indices (P > 0.01 compared with solvent control). Mitoquinone also improved blastocyst rate in PA-exposed groups, an effect that was dependent on PA concentration. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This is a fundamental study performed using a bovine in vitro model using PA-induced lipotoxicity during oocyte maturation. PA is the most predominant FFA in the FF that is known to induce lipotoxicity; however, in vivo maturation in patients suffering from maternal metabolic disorders involve more factors that cannot be represented in one model. Nevertheless, focusing on the carryover oxidative stress as a known key factor affecting developmental competence, and considering the novel beneficial rescuing effects of Mitoquinone shown here, we believe this model is of high biological relevance. WIDER IMPLICATIONS OF THE FINDINGS: Human oocytes collected for IVF treatments from patients with maternal metabolic disorders are vulnerable to lipotoxicity and oxidative stress during in vivo maturation. The results shown here suggest that mitochondrial targeted therapy, such as using Mitoquinone, during IVC may rescue the developmental competence and quality of these compromised oocytes. After further clinical trials, this may be a valuable approach to increase IVF success rates for infertile patients experiencing metabolic disorders. STUDY FUNDING/COMPETING INTEREST(S): This study was financially supported by a BOF/KP grant number 34399, from the University of Antwerp, Belgium. W.F.A.M. was supported by a postdoctoral fellowship from the Research Foundation-Flanders (FWO), grant number 12I1417N, Antwerp, Belgium. The Leica SP 8 confocal microscope used in this study was funded by the Hercules Foundation of the Flemish Government (Hercules grant AUHA.15.12). All authors have no financial or non-financial competing interests to declare.


Assuntos
Antioxidantes/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/metabolismo , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Animais , Bovinos , Meios de Cultura/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Líquido Folicular/metabolismo , Humanos , Infertilidade Feminina/etiologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/terapia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Oócitos/citologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/metabolismo , Ubiquinona/farmacologia
3.
Biol Reprod ; 96(6): 1181-1196, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28520897

RESUMO

Elevated concentrations of free fatty acids (FFAs), predominantly palmitic, stearic, and oleic acids (PSO), exert detrimental effects on oocyte developmental competence. This study examined the effects of omega-3 alpha-linolenic acid (ALA) during in vitro oocyte maturation (IVM) in the presence of PSO on subsequent embryo development and quality, and the cellular mechanisms that might be involved. Bovine cumulus-oocyte complexes (COCs) were supplemented during IVM with ALA (50 µM), PSO (425 µM), or PSO+ALA. Compared with FFA-free controls (P < 0.05), PSO increased embryo fragmentation and decreased good quality embryos on day 2 postfertilization. Day 7 blastocyst rate was also reduced. Day 8 blastocysts had lower cell counts and higher apoptosis but normal metabolic profile. In the PSO group, cumulus cell (CC) expansion was inhibited with an increased CC apoptosis while COC metabolism was not affected. Mitochondrial inner membrane potential (MMP; JC-1 staining) was reduced in the CCs and oocytes. Heat shock protein 70 (HSP70) but not glucose-regulated protein 78 kDa (GRP78, known as BiP; an endoplasmic reticulum stress marker) was upregulated in the CCs. Higher reactive oxygen species levels (DCHFDA staining) were detected in the oocytes. In contrast, adding ALA in the presence of PSO normalized embryo fragmentation, cleavage, blastocyst rates, and blastocyst quality compared to controls (P > 0.05). Combined treatment with ALA also reduced CC apoptosis, partially recovered CC expansion, abrogated the reduction in MMP in the CCs but not in the oocytes, and reduced BiP and HSP70 expression in CCs, compared with PSO only (P < 0.05). In conclusion, ALA supplementation protected oocyte developmental capacity under lipotoxic conditions mainly by protecting cumulus cell viability.


Assuntos
Bovinos/fisiologia , Células do Cúmulo/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/efeitos dos fármacos , Ácido alfa-Linolênico/farmacologia , Animais , Biomarcadores , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Células do Cúmulo/fisiologia , Mitocôndrias/fisiologia , Oócitos/fisiologia , Estresse Fisiológico/fisiologia
4.
Reprod Fertil Dev ; 29(9): 1763-1773, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27725075

RESUMO

An increasing number of reports suggests a role of hyaluronan (HA) in female reproduction and interest in its application in assisted reproduction is rising. However, there are contrasting data about the effectiveness of adding HA to the embryo-transfer medium on improving pregnancy rates. Using sheep as an experimental model, the studies reported here analysed the impact of HA infusion into the uterus on embryo attachment to uterine luminal epithelium (LE) and expression of selected markers of uterine receptivity. On Day 14 after natural mating (pre-attachment), uterine horns were infused with either (n=4 each): PBS (control), HA (1mg mL-1), HA+hyaluronidase 2 (Hyal2; 300IU mL-1) or 4-methyl-umbelliferone (HA-synthesis inhibitor; 4MU, 1mM). HA immunostaining on uterine sections collected on Day 17 was negative in the 4MU group and weak in the HA+Hyal2 group. In contrast to 4MU, which resulted in 100% attachment, HA infusion blocked embryo attachment in all treated animals. This was accompanied by the disappearance of mucin 1 and increased expression of osteopontin and CD44v6 in the LE of uteri with attached embryos. In conclusion, the presence of HA at the embryo-maternal interface during embryo implantation resulted in reduced endometrial receptivity and inhibited the interaction of trophoblasts with the LE, whereas clearance of HA favoured embryo attachment.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Animais , Endométrio/metabolismo , Feminino , Receptores de Hialuronatos/metabolismo , Mucina-1/metabolismo , Osteopontina/metabolismo , Gravidez , Ovinos , Útero/efeitos dos fármacos , Útero/metabolismo
5.
Reprod Fertil Dev ; 28(7): 936-947, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25562384

RESUMO

We investigated the local modulation of some histochemical properties of oviducts of the dromedary (Camelus dromedarius), focusing on the immnolocalisation of hyaluronic acid (HA) synthases (HAS2 and HAS3), hyaluronidases (HYAL2 and HYAL1) and the HA receptor CD44 in the ampulla and isthmus. Abundant acidic mucopolysaccharides (glycosaminoglycans) were detected by Alcian blue staining along the luminal surface of both ciliated and non-ciliated epithelial cells (LE). Staining for HAS2 was higher in the primary epithelial folds of the ampulla compared with the isthmus, especially in secretory cells, adluminal epithelial surface and supranuclear cell domain. HAS3 staining was stronger in the LE of the isthmus than ampulla. HYAL2 was detected in the LE in the ampulla and isthmus and was more intense in the adluminal projections of secretory cells. HYAL1 was weakly detected in the LE with no difference between the ampulla and isthmus. Strong CD44 immunostaining was present in the LE of the ampulla and isthmus. CD44 staining was higher in secretory cells than in ciliated epithelial cells and was higher in the supranuclear region than the basal region of the cytoplasm. In conclusion, we provide evidence that HA synthesis and turnover occur in the camel oviduct. Differences in HAS2 and HAS3 expression suggest regional differences in the molecular size of HA secreted in oviductal fluid that may influence oviduct-gamete interaction in the camel.


Assuntos
Camelus , Hialuronan Sintases/fisiologia , Hialuronoglucosaminidase/fisiologia , Oviductos/enzimologia , Animais , Células Epiteliais , Feminino
6.
Sci Rep ; 10(1): 9806, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555236

RESUMO

Maternal obesity can cause reduced oocyte quality and subfertility. Mitochondrial dysfunction plays a central role here, and most often inbred mouse models are used to study these pathways. We hypothesized that the mouse genetic background can influence the impact of high fat diet (HFD)-induced obesity on oocyte quality. We compared the inbred C57BL/6 (B6) and the outbred Swiss strains after feeding a HFD for 13w. HFD-mice had increased body weight gain, hypercholesterolemia, and increased oocyte lipid droplet (LD) accumulation in both strains. LD distribution was strain-dependent. In Swiss mouse oocytes, HFD significantly increased mitochondrial inner membrane potential (MMP), reactive oxygen species concentrations, mitochondrial ultrastructural abnormalities (by 46.4%), and endoplasmic reticulum (ER) swelling, and decreased mtDNA copy numbers compared with Swiss controls (P < 0.05). Surprisingly, B6-control oocytes exhibited signs of cellular stress compared to the Swiss controls (P < 0.05); upregulated gene expression of ER- and oxidative stress markers, high mitochondrial ultrastructural abnormalities (48.6%) and ER swelling. Consequently, the HFD impact on B6 oocyte quality was less obvious, with 9% higher mitochondrial abnormalities, and no additive effect on MMP and stress marks compared to B6 control (P > 0.1). Interestingly, mtDNA in B6-HFD oocytes was increased suggesting defective mitophagy. In conclusion, we show evidence that the genetic background or inbreeding can affect mitochondrial functions in oocytes and may influence the impact of HFD on oocyte quality. These results should create awareness when choosing and interpreting data obtained from different mouse models before extrapolating to human applications.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Obesidade/patologia , Oócitos/efeitos dos fármacos , Oócitos/patologia , Animais , Feminino , Endogamia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Anat Rec (Hoboken) ; 301(6): 1103-1114, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29346716

RESUMO

Neuropeptides AF (NPAF), FF (NPFF) and SF (NPSF) are RFamide neuropeptides known to be widely expressed in the mammalian central nervous system, where they fulfill a wide range of functions with pain modulation being the most prominent one. Recent evidence indicates that RFamides act as mediators in mast cell-sensory nerve communications related to allergic disease. Previous work by our group has shown that the expression levels of some members of the Mas-related gene receptor (Mrgpr) family in both enteric neurons and mucosal mast cells change during intestinal inflammation. The Mrgpr subtypes C11 and A4 can be activated by NPAF, while A1 and C11 are triggered by NPFF. The aim of the present study was to investigate whether RFamides of the NPFF group are expressed in the gastrointestinal tract and to identify possible targets and receptors that might be involved in RFamide-associated mast cell modulation. To this end, the expression and distribution patterns of NPFF/AF receptors and the NPFF precursor protein were determined in bone marrow-derived mucosal mast cells (BMMCs) by immunocytochemistry and (RT-) PCR. BMMCs were found to express MrgprA4 and A1, and functional analysis of the effects of NPAF by means of a ß-hexosaminidase assay, mMCP-1 ELISA, electron microscopy and live cell calcium imaging revealed a piecemeal degranulation induced by NPAF. However, knock-out of MrgprA4 and A1 did not reduce the effect of NPAF, indicating that the BMMC response to NPAF was receptor independent. ProNPFF was expressed in neurons and BMMCs, suggesting that both cell types are potential sources of NPAF in situ. Our results show that the RFamide NPAF can be considered as a novel modulator of BMMC activity in the neuro-immune communication in the gastrointestinal tract, although the exact signaling pathway remains to be elucidated. Anat Rec, 00:000-000, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 301:1103-1114, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Mastócitos/efeitos dos fármacos , Mucosa/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Cálcio/metabolismo , Quimiocina CCL2/metabolismo , Masculino , Mastócitos/metabolismo , Camundongos , Mucosa/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Neuropeptídeos/metabolismo
8.
Int J Vet Sci Med ; 6(Suppl): S49-S56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30761321

RESUMO

Semen cryopreservation is a well-established procedure used in veterinary assisted reproduction technology applications. We investigated damaging effects of cryopreservation on the structural and ultrastructural characteristics of bull sperm induced at different temperatures and steps during standard cryopreservation procedure using transmission (TEM) and scanning electron microscopy. We also examined the effect of cryopreservation on sperm DNA and chromatin integrity. Five healthy, fertile Friesian bulls were used, and the ejaculates were obtained using an artificial vagina method. The semen samples were pooled and diluted in a tris-yolk fructose (TYF) for a final concentration of 80 × 106 spermatozoa/ml. The semen samples were packed in straws (0.25 ml), and stored in liquid nitrogen (-196°C). Samples were evaluated before dilution, just after dilution (at 37°C), at 2 h and 4 h during equilibration, and after thawing (37°C for 30 s in water bath). In association with step-wise decline in motility and viability, our results showed that the plasma membrane surrounding the sperm head was the most vulnerable structure to cryo-damage with various degrees of swelling, undulation, or loss affecting about 50% of the total sperm population after equilibration and freezing. Typical acrosome reaction was limited to 10% of the spermatozoa after freezing. We also observed increased number of mitochondria with distorted cristae (15%). Chromatin damage was significantly increased by cryopreservation as evident by TEM (9%). This was mainly due to DNA breaks as confirmed by Sperm Chromatin Structure Assay (SCSA) (8.4%) whereas the chromatin structure was less affected as evaluated microscopically by toluidine blue staining. We concluded that, using standard cryopreservation protocol, the most pronounced damage induced by cryopreservation is observed in the plasma membrane. Further improvement of cryopreservation protocols should thus be targeted at reducing plasma membrane damage. Acrosomal, mitochondrial and chromatin damage are also evident but appear to be within acceptable limits as discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA