Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(30)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38631329

RESUMO

Modified fluorescent nanoparticles continue to emerge as promising candidates for drug delivery, bioimaging, and labeling tools for various biomedical applications. The ability of nanomaterials to fluorescently label cells allow for the enhanced detection and understanding of diseases. Silica nanoparticles have a variety of unique properties that can be harnessed for many different applications, causing their increased popularity. In combination with an organic dye, fluorescent nanoparticles demonstrate a vast range of advantageous properties including long photostability, surface modification, and signal amplification, thus allowing ease of manipulation to best suit bioimaging purposes. In this study, the Stöber method with tetraethyl orthosilicate (TEOS) and a fluorescent dye sulfo-Cy5-amine was used to synthesize fluorescent silica nanoparticles. The fluorescence spectra, zeta potential, quantum yield, cytotoxicity, and photostability were evaluated. The increased intracellular uptake and photostability of the dye-silica nanoparticles show their potential for bioimaging.


Assuntos
Corantes Fluorescentes , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Corantes Fluorescentes/química , Nanopartículas/química , Humanos , Carbocianinas/química , Sobrevivência Celular/efeitos dos fármacos , Imagem Óptica/métodos
2.
Anal Chem ; 94(5): 2615-2624, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35073053

RESUMO

Bacterial infections are the leading cause of morbidity and mortality in the world, particularly due to a delay in treatment and misidentification of the bacterial species causing the infection. Therefore, rapid and accurate identification of these pathogens has been of prime importance. The conventional diagnostic techniques include microbiological, biochemical, and genetic analyses, which are time-consuming, require large sample volumes, expensive equipment, reagents, and trained personnel. In response, we have now developed a paper-based ratiometric fluorescent sensor array. Environment-sensitive fluorescent dyes (3-hydroxyflavone derivatives) pre-adsorbed on paper microzone plates fabricated using photolithography, upon interaction with bacterial cell envelopes, generate unique fluorescence response patterns. The stability and reproducibility of the sensor array response were thoroughly investigated, and the analysis procedure was refined for optimal performance. Using neural networks for response pattern analysis, the sensor was able to identify 16 bacterial species and recognize their Gram status with an accuracy rate greater than 90%. The paper-based sensor was stable for up to 6 months after fabrication and required 30 times lower dye and sample volumes as compared to the analogous solution-based sensor. Therefore, this approach opens avenues to a state-of-the-art diagnostic tool that can be potentially translated into clinical applications in low-resource environments.


Assuntos
Bactérias , Infecções Bacterianas , Corantes Fluorescentes , Humanos , Reprodutibilidade dos Testes , Espectrometria de Fluorescência
3.
Mol Pharm ; 19(10): 3586-3599, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35640060

RESUMO

Surgery remains the only potentially curative treatment option for pancreatic cancer, but resections are made more difficult by infiltrative disease, proximity of critical vasculature, peritumoral inflammation, and dense stroma. Surgeons are limited to tactile and visual cues to differentiate cancerous tissue from normal tissue. Furthermore, translating preoperative images to the intraoperative setting poses additional challenges for tumor detection, and can result in undetected and unresected lesions. Thus, pancreatic ductal adenocarcinoma (PDAC) has high rates of incomplete resections, and subsequently, disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to improve intraoperative detection of cancer and ultimately improve surgical outcomes. Initial clinical trials have demonstrated feasibility of FGS for PDAC, but there are limited targeted probes under investigation for this disease, highlighting the need for development of additional novel biomarkers to reflect the PDAC heterogeneity. MUCIN16 (MUC16) is a glycoprotein that is overexpressed in 60-80% of PDAC. In our previous work, we developed a MUC16-targeted murine antibody near-infrared conjugate, termed AR9.6-IRDye800, that showed efficacy in detecting pancreatic cancer. To build on the translational potential of this imaging probe, a humanized variant of the AR9.6 fluorescent conjugate was developed and investigated herein. This conjugate, termed huAR9.6-IRDye800, showed equivalent binding properties to its murine counterpart. Using an optimized dye:protein ratio of 1:1, in vivo studies demonstrated high tumor to background ratios in MUC16-expressing tumor models, and delineation of tumors in a patient-derived xenograft model. Safety, biodistribution, and toxicity studies were conducted. These studies demonstrated that huAR9.6-IRDye800 was safe, did not yield evidence of histological toxicity, and was well tolerated in vivo. The results from this work suggest that AR9.6-IRDye800 is an efficacious and safe imaging agent for identifying pancreatic cancer intraoperatively through fluorescence-guided surgery.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antígeno Ca-125/metabolismo , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Recidiva Local de Neoplasia , Imagem Óptica/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Distribuição Tecidual , Neoplasias Pancreáticas
4.
Bioorg Med Chem Lett ; 29(19): 126633, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31474482

RESUMO

The enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential therapeutic target for multiple myeloma. Malignant plasma cells produce and secrete large amounts of monoclonal protein, and inhibition of GGDPS results in disruption of protein geranylgeranylation which in turn impairs intracellular protein trafficking. Our previous work has demonstrated that some isoprenoid triazole bisphosphonates are potent and selective inhibitors of GGDPS. To explore the possibility of selective delivery of such compounds to plasma cells, new analogues with an ω-hydroxy group have been synthesized and examined for their enzymatic and cellular activity. These studies demonstrate that incorporation of the ω-hydroxy group minimally impairs GGDPS inhibitory activity. Furthermore conjugation of one of the novel ω-hydroxy GGDPS inhibitors to hyaluronic acid resulted in enhanced cellular activity. These results will allow future studies to focus on the in vivo biodistribution of HA-conjugated GGDPS inhibitors.


Assuntos
Antineoplásicos/farmacologia , Difosfonatos/química , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/química , Mieloma Múltiplo/tratamento farmacológico , Terpenos/química , Antineoplásicos/química , Apoptose , Proliferação de Células , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Prenilação de Proteína , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Soft Matter ; 14(23): 4762-4771, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29799600

RESUMO

Polymeric nanoparticles are increasingly used as biocompatible carriers for drugs and imaging agents. Understanding their self-assembly dynamics and morphology is of ultimate importance to develop nanoformulations with optimal characteristics. To achieve better performance, it is vital to account for cargo-carrier interactions at the molecular level. The self-assembly dynamics were studied and the internal structure of nanoparticles derived from a series of hydrophobically modified hyaluronic acid was revealed. Environment-sensitive ratiometric fluorescent probes provide valuable information about the nanoparticle's interior morphology, and molecular dynamics simulations complement the overall picture with insights into intramolecular and intermolecular interactions of the polymer, as well as its interactions with the small-molecule load. van der Waals and π-π interactions of the hydrophobic side fragments play a leading role in self-assembly and loading of hydrophobic small molecules. Aliphatic substituents form more extensive hydrophobic domains, while aromatic moieties allow more interaction of the loaded small molecules with the surrounding solvent.

6.
J Photochem Photobiol A Chem ; 352: 55-64, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29430162

RESUMO

Fluorescent nanomaterials require high colloidal stability for effective use in imaging and sensing applications. We herein report the synthesis of carbazole-based organic fluorescent nanoaggregates, and demonstrate the superior colloidal stability of alkyl-substituted dye aggregates over their non-alkylated analogs. The role of alkyl chains in self-assembly and stability of such nanoaggregates is discussed based on both experimental and molecular dynamics simulation data, and spectral characteristics of the precursor dyes and their aggregates are described. The obtained results provide new insights on development of colloidally stable organic fluorescent nanomaterials with low polydispersity.

7.
Nanomedicine ; 14(3): 769-780, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29325740

RESUMO

Pancreatic ductal adenocarcinoma is highly lethal and surgical resection is the only potential curative treatment for the disease. In this study, hyaluronic acid derived nanoparticles with physico-chemically entrapped indocyanine green, termed NanoICG, were utilized for intraoperative near infrared fluorescence detection of pancreatic cancer. NanoICG was not cytotoxic to healthy pancreatic epithelial cells and did not induce chemotaxis or phagocytosis, it accumulated significantly within the pancreas in an orthotopic pancreatic ductal adenocarcinoma model, and demonstrated contrast-enhancement for pancreatic lesions relative to non-diseased portions of the pancreas. Fluorescence microscopy showed higher fluorescence intensity in pancreatic lesions and splenic metastases due to NanoICG compared to ICG alone. The in vivo safety profile of NanoICG, including, biochemical, hematological, and pathological analysis of NanoICG-treated healthy mice, indicates negligible toxicity. These results suggest that NanoICG is a promising contrast agent for intraoperative detection of pancreatic tumors.


Assuntos
Ácido Hialurônico/química , Verde de Indocianina/administração & dosagem , Nanopartículas/administração & dosagem , Imagem Óptica/métodos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Cirurgia Assistida por Computador/métodos , Animais , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Quimiotaxia , Modelos Animais de Doenças , Feminino , Fluorescência , Verde de Indocianina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Nanopartículas/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Fagocitose , Células Tumorais Cultivadas
8.
J Am Chem Soc ; 139(46): 16885-16893, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29068229

RESUMO

The excited-state dynamics of an aniline-triazine electron donor-acceptor dyad with an alkyne spacer has been investigated using a combination of ultrafast broadband mid-IR and visible transient absorption and fluorescence spectroscopies. The transient IR data reveal the occurrence of an efficient alkyne to allene isomerization of the spacer with a time constant increasing from a few hundreds of femtoseconds to a few picoseconds with solvent viscosity. This process is faster than the vibrational cooling of the Franck-Condon excited state, indicative of nonequilibrium dynamics. The transient electronic absorption and fluorescence data evidence that this transformation is accompanied by a charge separation between the donor and the acceptor subunits. The allene character of the spacer implies an orthogonal orientation of the donor and acceptor moieties, similar to that proposed for twisted intramolecular charge-transfer states. Such states are often invoked in the excited-state dynamics of donor-acceptor dyads, but their involvement could never be unambiguously evidenced spectroscopically. The alkyne-allene isomerization involves not only a torsional motion but also a bending of the molecule due to the sp to sp2 rehybridization of one of the alkyne carbon atoms. This twisted and rehybridized intramolecular charge transfer ("TRICT") state decays back to the planar and linear alkyne ground state on a time scale decreasing from a few hundred to ten picoseconds upon going from weakly to highly polar solvents. The different solvent dependencies reveal that the dynamics of the allene buildup are controlled by the structural changes, whereas the decay is limited by the charge recombination step.

9.
Mol Pharm ; 13(3): 720-8, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26824142

RESUMO

Fatty acid synthase (FASN), the enzyme that catalyzes de novo synthesis of fatty acids, is expressed in many cancer types. Its potential as a therapeutic target is well recognized, but inhibitors of FASN have not yet been approved for cancer therapy. Orlistat (ORL), an FDA-approved lipase inhibitor, is also an effective inhibitor of FASN. However, ORL is extremely hydrophobic and has low systemic uptake after oral administration. Thus, new strategies are required to formulate ORL for cancer treatment as a FASN inhibitor. Here, we report the development of a nanoparticle (NP) formulation of ORL using amphiphilic bioconjugates that are derived from hyaluronic acid (HA), termed Nano-ORL. The NPs were loaded with up to 20 wt % weight of ORL at greater than 95% efficiency. The direct inhibition of the human recombinant thioesterase domain of FASN by ORL extracted from Nano-ORL was similar to that of stock ORL. Nano-ORL demonstrated a similar ability to inhibit cellular FASN activity when compared to free ORL, as demonstrated by analysis of (14)C-acetate incorporation into lipids. Nano-ORL treatment also disrupted mitochondrial function similarly to ORL by reducing adenosine triphosphate turnover in MDA-MB-231 and LNCaP cells. Nano-ORL demonstrated increased potency compared to ORL toward prostate and breast cancer cells. Nano-ORL decreased viability of human prostate and breast cancer cell lines to 55 and 57%, respectively, while free ORL decreased viability to 71 and 79% in the same cell lines. Moreover, Nano-ORL retained cytotoxic activity after a 24 h preincubation in aqueous conditions. Preincubation of ORL dramatically reduced the efficacy of ORL as indicated by high cell viability (>85%) in both breast and prostate cell lines. These data demonstrate that NP formulation of ORL using HA-derived polymers retains similar levels of FASN, lipid synthesis, and ATP turnover inhibition while significantly improving the cytotoxic activity against cancer cell lines.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ácido Graxo Sintases/antagonistas & inibidores , Lactonas/farmacologia , Nanopartículas/química , Neoplasias da Próstata/patologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores da Síntese de Ácidos Graxos/administração & dosagem , Inibidores da Síntese de Ácidos Graxos/farmacologia , Feminino , Humanos , Lactonas/administração & dosagem , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Nanopartículas/administração & dosagem , Orlistate , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Células Tumorais Cultivadas
10.
Bioconjug Chem ; 26(2): 294-303, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25565445

RESUMO

Detecting positive tumor margins and local malignant masses during surgery is critical for long-term patient survival. The use of image-guided surgery for tumor removal, particularly with near-infrared fluorescent imaging, is a potential method to facilitate removing all neoplastic tissue at the surgical site. In this study we demonstrate a series of hyaluronic acid (HLA)-derived nanoparticles that entrap the near-infrared dye indocyanine green, termed NanoICG, for improved delivery of the dye to tumors. Self-assembly of the nanoparticles was driven by conjugation of one of three hydrophobic moieties: aminopropyl-1-pyrenebutanamide (PBA), aminopropyl-5ß-cholanamide (5ßCA), or octadecylamine (ODA). Nanoparticle self-assembly, dye loading, and optical properties were characterized. NanoICG exhibited quenched fluorescence that could be activated by disassembly in a mixed solvent. NanoICG was found to be nontoxic at physiologically relevant concentrations and exposure was not found to inhibit cell growth. Using an MDA-MB-231 tumor xenograft model in mice, strong fluorescence enhancement in tumors was observed with NanoICG using a fluorescence image-guided surgery system and a whole-animal imaging system. Tumor contrast with NanoICG was significantly higher than with ICG alone.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Corantes Fluorescentes , Verde de Indocianina , Nanopartículas/química , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos , Animais , Mama/patologia , Mama/cirurgia , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/administração & dosagem , Humanos , Ácido Hialurônico/química , Verde de Indocianina/administração & dosagem , Camundongos , Camundongos Nus
11.
J Control Release ; 376: 215-230, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39384153

RESUMO

Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.

12.
J Clin Med ; 13(20)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39458160

RESUMO

Background/Objectives: Pancreatic cancer is the third leading cause of death related to cancer. The only possible cure presently is complete surgical resection; however, this is limited by difficulty in clearly defining tumor margins. Enhancement of the visualization of pancreatic ductal adenocarcinoma (PDAC) tumor margins using near-infrared dye-conjugated tumor-specific antibodies was pioneered by using anti-CEA, anti-CA19.9, and anti-MUC5AC in orthotopic mouse models of pancreatic cancer. Recently, an antibody to Mucin 4 (MUC4) conjugated to a fluorescent probe has shown promise in targeting colon tumors in orthotopic mouse models. Methods: In the present study, we targeted pancreatic cancer using an anti-MUC4 antibody conjugated to IRDye800 (anti-MUC4-IR800) in orthotopic mouse models. Two pancreatic cancer human cell lines were used, SW1990 and CD18/HPAF. Results: Anti-MUC4-IR800 targeted the two pancreatic cancer cell line tumors in orthotopic mouse models with high tumor-to-pancreas ratios and high tumor-to-liver ratios, with greater targeting seen in SW1990. Conclusions: The present results suggest anti-MUC4-IR800's potential to be used in fluorescence-guided surgical resection of pancreatic cancer.

13.
Cancers (Basel) ; 16(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456534

RESUMO

Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Currently, surgical resection is the only potentially curative treatment. Unfortunately, less than 20% of PDAC patients are eligible for surgical resection at diagnosis. In the past few decades, neoadjuvant chemotherapy treatment (NCT) has been investigated as a way to downstage PDAC tumors for surgical resection. Fluorescence-guided surgery (FGS) is a technique that can aid in increasing complete resection rates by enhancing the tumor through passive or active targeting of a contrast agent. In active targeting, a probe (e.g., antibody) binds a protein differentially upregulated in the tumor compared to normal tissue. Mucin 16 (MUC16), a transmembrane glycoprotein, has recently been explored as an FGS target in preclinical tumor models. However, the impact of chemotherapy on MUC16 expression is unknown. Methods: To investigate this issue, immunohistochemistry was performed on PDAC patient samples. Results: We found that MUC16 expression was retained after NCT in patient samples (mean expression = 5.7) with minimal change in expression between the matched diagnostic (mean expression = 3.66) and PDAC NCT patient samples (mean expression = 4.5). Conclusions: This study suggests that MUC16 is a promising target for FGS and other targeted therapies in PDAC patients treated with NCT.

14.
ACS Pharmacol Transl Sci ; 6(12): 1859-1869, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093839

RESUMO

Prostate cancer is the third leading cause of cancer-related death in men in the United States. Taxane chemotherapy is a staple therapy for men with metastatic prostate cancer, yet the median survival is less than 2 years in this setting. New strategies are needed to overcome taxane resistance to improve patient survival. Fatty acid synthase (FASN) is overexpressed in many types of cancer, and several inhibitors have been designed in the past 30 years. Previously, we showed that the FASN inhibitor orlistat was able to synergize with taxanes in two established taxane-resistant (TxR) cell lines. In the current study, we investigated five FASN inhibitors-cerulenin, orlistat, triclosan, thiophenopyrimidine fasnall, and pyrazole derivative TVB-3166 for their potential to synergize with docetaxel (a microtubule stabilizer) and vinblastine (a microtubule destabilizer) in TxR cell lines. Orlistat, TVB-3166, and fasnall synergistically inhibited cell viability when combined with docetaxel and vinblastine in PC3-TxR and DU145-TxR cells. Confocal microscopy and immunoblot with an antidetyrosinated tubulin antibody demonstrated that enhanced microtubule stability was induced by the combined treatment of FASN inhibitors and docetaxel compared with docetaxel alone, while combinations of FASN inhibitors with vinblastine diminished microtubule stability compared to vinblastine alone.

15.
Cancer Lett ; 561: 216150, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36997106

RESUMO

Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Cirurgia Assistida por Computador , Humanos , Meios de Contraste , Fluorescência , Mucinas , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Cirurgia Assistida por Computador/métodos , Proteínas , Imagem Óptica/métodos , Neoplasias Pancreáticas
16.
J Pers Med ; 13(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241027

RESUMO

Accurately identifying metastatic disease is critical to directing the appropriate treatment in pancreatic cancer. Mucin 5AC is overexpressed in pancreatic cancer but absent in normal pancreas tissue. The present proof-of-concept study demonstrates the efficacy of an anti-mucin 5AC antibody conjugated to an IR800 dye (MUC5AC-IR800) to preferentially label a liver metastasis of pancreatic cancer (Panc Met) in a unique patient-derived orthotopic xenograft (PDOX) model. In orthotopic models, the mean tumor to background ratio was 1.787 (SD ± 0.336), and immunohistochemistry confirmed the expression of MUC5AC within tumor cells. MUC5AC-IR800 provides distinct visualization of pancreatic cancer liver metastasis in a PDOX mouse model, demonstrating its potential utility in staging laparoscopy and fluorescence-guided surgery.

17.
ACS Omega ; 6(28): 17890-17901, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308024

RESUMO

Fluorescent polymers have been increasingly investigated to improve their water solubility and biocompatibility to enhance their performance in drug delivery and theranostic applications. However, the environmentally friendly synthesis and dual functionality of such systems remain a challenge due to the complicated synthesis of conventional fluorescent materials. Herein, we generated a novel blue fluorescent polymer dot through chemical conjugation of hydrophobic amino acids to hyaluronic acid (HA) under one-pot green chemistry conditions. These nonconjugated fluorescent polymer dots (NCPDs) are water soluble, nontoxic to cells, have high fluorescence quantum yield, and can be used for in vitro bioimaging. HA-derived NCPDs exhibit excitation wavelength-dependent fluorescent properties. In addition, the NCPDs also show enhanced doxorubicin loading and delivery in naive and drug-resistant breast cancer cells in 2D and 3D tumor cellular systems. These results demonstrate the potential for successful synthetic scale-up and applications for HA-derived NCPDs.

18.
ACS Omega ; 6(41): 27598, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693181

RESUMO

[This corrects the article DOI: 10.1021/acsomega.1c01343.].

19.
Biotechniques ; 71(3): 456-464, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34392706

RESUMO

The conventional orthotopic/xenograft models or genetically engineered murine models of colon cancer (CRC) are limited in their scope for a true understanding of tumor growth, progression and eventual metastasis in its natural microenvironment. In the currently used murine models of CRC metastasis, the metastasis occurs primarily in the liver, though lung metastasis accounts for a significant proportion of CRC metastasis. There is an urgent need for a murine model of CRC, which not only allows tumor progression in the colonic mucosa but also metastasis of the lung. The authors describe a minimally invasive murine model of colon cancer progression that may be ideal for a wide range of applications, including evaluating gene function, microenvironment, cancer metastasis and therapeutic translational research.


Assuntos
Neoplasias do Colo , Neoplasias Pulmonares , Transplante de Neoplasias , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Colonoscopia , Modelos Animais de Doenças , Neoplasias Pulmonares/secundário , Camundongos , Microambiente Tumoral
20.
Biofabrication ; 14(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34905737

RESUMO

In the past decade, cartilage tissue engineering has arisen as a promising therapeutic option for degenerative joint diseases, such as osteoarthritis, in the hope of restoring the structure and physiological functions. Hydrogels are promising biomaterials for developing engineered scaffolds for cartilage regeneration. However, hydrogel-delivered mesenchymal stem cells or chondrocytes could be exposed to elevated levels of reactive oxygen species (ROS) in the inflammatory microenvironment after being implanted into injured joints, which may affect their phenotype and normal functions and thereby hinder the regeneration efficacy. To attenuate ROS induced side effects, a multifunctional hydrogel with an innate anti-oxidative ability was produced in this study. The hydrogel was rapidly formed through a dynamic covalent bond between phenylboronic acid grafted hyaluronic acid (HA-PBA) and poly(vinyl alcohol) and was further stabilized through a secondary crosslinking between the acrylate moiety on HA-PBA and the free thiol group from thiolated gelatin. The hydrogel is cyto-compatible and injectable and can be used as a bioink for 3D bioprinting. The viscoelastic properties of the hydrogels could be modulated through the hydrogel precursor concentration. The presence of dynamic covalent linkages contributed to its shear-thinning property and thus good printability of the hydrogel, resulting in the fabrication of a porous grid construct and a meniscus like scaffold at high structural fidelity. The bioprinted hydrogel promoted cell adhesion and chondrogenic differentiation of encapsulated rabbit adipose derived mesenchymal stem cells. Meanwhile, the hydrogel supported robust deposition of extracellular matrix components, including glycosaminoglycans and type II collagen, by embedded mouse chondrocytesin vitro. Most importantly, the hydrogel could protect encapsulated chondrocytes from ROS induced downregulation of cartilage-specific anabolic genes (ACAN and COL2) and upregulation of a catabolic gene (MMP13) after incubation with H2O2. Furthermore, intra-articular injection of the hydrogel in mice revealed adequate stability and good biocompatibilityin vivo. These results demonstrate that this hydrogel can be used as a novel bioink for the generation of 3D bioprinted constructs with anti-ROS ability to potentially enhance cartilage tissue regeneration in a chronic inflammatory and elevated ROS microenvironment.


Assuntos
Bioimpressão , Engenharia Tecidual , Animais , Bioimpressão/métodos , Cartilagem , Condrócitos , Gelatina/farmacologia , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/farmacologia , Peróxido de Hidrogênio , Camundongos , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA