Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(8): 3029-3036, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964171

RESUMO

Airborne spread of coronavirus disease 2019 (COVID-19) by infectious aerosol is all but certain. However, easily implemented approaches to assess the actual environmental threat are currently unavailable. We present a simple approach with the potential to rapidly provide information about the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the atmosphere at any location. We used a portable dehumidifier as a readily available and affordable tool to collect airborne virus in the condensate. The dehumidifiers were deployed in selected locations of a hospital ward with patients reporting flu-like symptoms which could possibly be due to COVID-19 over three separate periods of one week. Samples were analyzed frequently for both virus envelope protein and SARS-CoV-2 RNA. In several samples across separate deployments, condensate from dehumidifiers tested positive for the presence of SARS-CoV-2 antigens as confirmed using two independent assays. RNA was detected, but not attributable to SARS-CoV-2. We verified the ability of the dehumidifier to rapidly collect aerosolized sodium chloride. Our results point to a facile pool testing method to sample air in any location in the world and assess the presence and concentration of an infectious agent to obtain quantitative risk assessment of exposure, designate zones as "hot spots" and minimize the need for individual testing which may often be time consuming, expensive, and laborious.


Assuntos
COVID-19/genética , RNA Viral , SARS-CoV-2 , Manejo de Espécimes , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , RNA Viral/química , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/genética
2.
Bioorg Chem ; 86: 15-27, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684859

RESUMO

Structure based virtual screening of two libraries containing 27,628 numbers of antiviral compounds was used to discover a few of the potent inhibitor molecules against Banna virus (BAV). Cross-docking studies with many common interfering proteins provided five of the highly selective inhibitor for BAV. Analyses of the leading molecules with ADME-Tox filtering tool and atomistic molecular dynamics simulation studies finally discovered a benzoxazolone derivative as one of the most promising molecules towards the highly selective inhibition of BAV. The theoretical calculations are also supported by the experimental evidences where the interactions between the hit ligand and a model peptide sequence, mimicking the VP9 protein of BAV, were studied. Overall the development of a personalized therapeutic towards the highly selective inhibition of BAV is discussed herein for the first time in literature.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Coltivirus/efeitos dos fármacos , Descoberta de Drogas , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais/química , Proteínas do Capsídeo/metabolismo , Coltivirus/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
3.
Bioconjug Chem ; 29(2): 255-266, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268009

RESUMO

Two novel α-tocopheryl-lipoic acid conjugates (TL1 and TL2) were synthesized for the anticancer drug, doxorubicin (DOX), delivery. Both conjugates were able to form stable nanovesicles. The critical aggregation concentration (CAC) was determined using 4-(N,N-dimethylamino)cinnamaldehyde (DMACA) as a fluorescence probe. Formation of highly packed nanovesicles was characterized by 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy and microviscosity measurements. The morphologies of nanovesicles were visualized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The response of nanovesicles to reducing environment of cells was probed by the addition of dithiothreitol (DTT), which was followed by the increase in the hydrodynamic diameter under dynamic light scattering (DLS) measurements. The encapsulation efficiency of a commonly used anticancer drug, doxorubicin (DOX), in nanovesicles was found to be ∼60% and ∼55% for TL1 and TL2, respectively (TL1-DOX and TL2-DOX). Also, the cumulative drug (DOX) release from DOX-encapsulated nanovesicles in response to biological reducing agent glutathione (GSH) was ∼50% and ∼40% for TL1-DOX and TL2-DOX, respectively, over a period of 10 h. Both TL1-DOX and TL2-DOX delivered the anticancer drug, doxorubicin (DOX), across the DOX-sensitive and DOX-resistant HeLa (HeLa-DOXR) cells in an efficient manner and significantly more efficaciously than the drug alone treatments, especially in HeLa-DOXR cells. The nanovesicle mediated DOX treatment also showed significantly higher cell death when compared to DOX alone treatment in HeLa-DOXR cells. Blood compatibility of the nanovesicles was supported from clotting time, hemolysis, and red blood cell (RBC) aggregation experiments for their potential in vivo applications. Concisely, we present biocompatible and responsive nanovesicles for efficacious drug delivery to drug-sensitive and drug-resistant cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Nanocápsulas/química , Ácido Tióctico/química , alfa-Tocoferol/análogos & derivados , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Oxirredução
4.
Chemistry ; 21(14): 5467-76, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25677082

RESUMO

A silver ion (Ag(+))-triggered thixotropic metallo(organo)gel of p-pyridyl-appended oligo(p-phenylenevinylene) derivatives (OPVs) is reported for the first time. Solubilization of single-walled carbon nanohorns (SWCNHs) in solutions of the pure OPVs as well as in the metallogels mediated by π-π interactions has also been achieved. In situ fabrication of silver nanoparticles (AgNPs) in the SWCNH-doped dihybrid gel leads to the formation of a trihybrid metallogel. The mechanical strength of the metallogels could be increased stepwise in the order: freshly prepared gel

5.
Nano Lett ; 14(3): 1394-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24547692

RESUMO

Plasmonic metasurfaces have recently attracted much attention due to their ability to abruptly change the phase of light, allowing subwavelength optical elements for polarization and wavefront control. However, most previously demonstrated metasurface designs suffer from low coupling efficiency and are based on metallic resonators, leading to ohmic loss. Here, we present an alternative approach to plasmonic metasurfaces by replacing the metallic resonators with high-refractive-index silicon cut-wires in combination with a silver ground plane. We experimentally demonstrate that this meta-reflectarray can be used to realize linear polarization conversion with more than 98% conversion efficiency over a 200 nm bandwidth in the short-wavelength infrared band. We also demonstrate optical vortex beam generation using a meta-reflectarray with an azimuthally varied phase profile. The vortex beam generation is shown to have high efficiency over a wavelength range from 1500 to 1600 nm. The use of dielectric resonators in place of their plasmonic counterparts could pave the way for ultraefficient metasurface-based devices at high frequencies.

6.
Angew Chem Int Ed Engl ; 53(4): 1113-7, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24338837

RESUMO

We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH 7.4 but rupture rapidly at pH≈6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Oligopeptídeos/química , Receptores de Fator de Crescimento Neural/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Oligopeptídeos/síntese química , Relação Estrutura-Atividade
7.
ACS Nano ; 18(18): 11921-11932, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651695

RESUMO

Chirality is a structural metric that connects biological and abiological forms of matter. Although much progress has been made in understanding the chemistry and physics of chiral inorganic nanoparticles over the past decade, almost nothing is known about chiral two-dimensional (2D) borophene nanoplatelets and their influence on complex biological networks. Borophene's polymorphic nature, derived from the bonding configurations among boron atoms, distinguishes it from other 2D materials and allows for further customization of its material properties. In this study, we describe a synthetic methodology for producing chiral 2D borophene nanoplatelets applicable to a variety of structural polymorphs. Using this methodology, we demonstrate feasibility of top-down synthesis of chiral χ3 and ß12 phases of borophene nanoplatelets via interaction with chiral amino acids. The chiral nanoplatelets were physicochemically characterized extensively by various techniques. Results indicated that the thiol presenting amino acids, i.e., cysteine, coordinates with borophene in a site-selective manner, depending on its handedness through boron-sulfur conjugation. The observation has been validated by circular dichroism, X-ray photoelectron spectroscopy, and 11B NMR studies. To understand how chiral nanoplatelets interact with biological systems, mammalian cell lines were exposed to them. Results showed that the achiral as well as the left- and right-handed biomimetic χ3 and ß12 borophene nanoplatelets have distinct interaction with the cellular membrane, and their internalization pathway differs with their chirality. By engineering optical, physical, and chemical properties, these chiral 2D nanomaterials could be applied successfully to tuning complex biological events and find applications in photonics, sensing, catalysis, and biomedicine.

8.
ACS Nano ; 18(2): 1289-1324, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166377

RESUMO

A significant amount of progress in nanotechnology has been made due to the development of engineered nanoparticles. The use of metallic nanoparticles for various biomedical applications has been extensively investigated. Biomedical research is highly focused on them because of their inert nature, nanoscale structure, and similar size to many biological molecules. The intrinsic characteristics of these particles, including electronic, optical, physicochemical, and surface plasmon resonance, that can be altered by altering their size, shape, environment, aspect ratio, ease of synthesis, and functionalization properties, have led to numerous biomedical applications. Targeted drug delivery, sensing, photothermal and photodynamic therapy, and imaging are some of these. The promising clinical results of NBTXR3, a high-Z radiosensitizing nanomaterial derived from hafnium, have demonstrated translational potential of this metal. This radiosensitization approach leverages the dependence of energy attenuation on atomic number to enhance energy-matter interactions conducive to radiation therapy. High-Z nanoparticle localization in tumor issue differentially increases the effect of ionizing radiation on cancer cells versus nearby healthy ones and mitigates adverse effects by reducing the overall radiation burden. This principle enables material multifunctionality as contrast agents in X-ray-based imaging. The physiochemical properties of hafnium (Z = 72) are particularly advantageous for these applications. A well-placed K-edge absorption energy and high mass attenuation coefficient compared to elements in human tissue across clinical energy ranges leads to significant attenuation. Chemical reactivity allows for variety in nanoparticle synthesis, composition, and functionalization. Nanoparticles such as hafnium oxide exhibit excellent biocompatibility due to physiochemical inertness prior to incidence with ionizing radiation. Additionally, the optical and electronic properties are applicable in biosensing, optical component coatings, and semiconductors. The wide interest has prompted extensive research in design and synthesis to facilitate property fine-tuning. This review summarizes synthetic methods for hafnium-based nanomaterials and applications in therapy, imaging, and biosensing with a mechanistic focus. A discussion and future perspective section highlights clinical progress and elaborates on current challenges. By focusing on factors impacting applicational effectiveness and examining limitations this review aims to support researchers and expedite clinical translation of future hafnium-based nanomedicine.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias , Humanos , Háfnio/química , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Metais
9.
ACS Nano ; 18(12): 9199-9220, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466962

RESUMO

The majority of triple negative breast cancers (TNBCs) are basal-like breast cancers (BLBCs), which tend to be more aggressive, proliferate rapidly, and have poor clinical outcomes. A key prognostic biomarker and regulator of BLBC is the Forkhead box C1 (FOXC1) transcription factor. However, because of its functional placement inside the cell nucleus and its structural similarity with other related proteins, targeting FOXC1 for therapeutic benefit, particularly for BLBC, continues to be difficult. We envision targeted nonviral delivery of CRISPR/Cas9 plasmid toward the efficacious knockdown of FOXC1. Keeping in mind the challenges associated with the use of CRISPR/Cas9 in vivo, including off-targeting modifications, and effective release of the cargo, a nanoparticle with context responsive properties can be designed for efficient targeted delivery of CRISPR/Cas9 plasmid. Consequently, we have designed, synthesized, and characterized a zwitterionic amino phospholipid-derived transfecting nanoparticle for delivery of CRISPR/Cas9. The construct becomes positively charged only at low pH, which encourages membrane instability and makes it easier for nanoparticles to exit endosomes. This has enabled effective in vitro and in vivo downregulation of protein expression and genome editing. Following this, we have used EpCAM aptamer to make the system targeted toward BLBC cell lines and to reduce its off-target toxicity. The in vivo efficacy, biodistribution, preliminary pharmacokinetics, and biosafety of the optimized targeted CRISPR nanoplatform is then validated in a rodent xenograft model. Overall, we have attempted to knockout the proto-oncogenic FOXC1 expression in BLBC cases by efficient delivery of CRISPR effectors via a context-responsive nanoparticle delivery system derived from a designer lipid derivative. We believe that the nonviral approach for in vitro and in vivo delivery of CRISPR/Cas9 targeted toward FOXC1, studied herein, will greatly emphasize the therapeutic regimen for BLBC.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Sistemas CRISPR-Cas , Fosfolipídeos , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
10.
Chem Asian J ; : e202400284, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953124

RESUMO

Dicarboxylate metallosurfactants (AASM), synthesized by mixing N-dodecyl aminomalonate, -aspartate and -glutamate with CaCl2, MnCl2 and CdCl2, were characterized by XRD, FTIR, and NMR spectroscopy. Layered structures, formed by metallosurfactants, were evidenced from differential scanning calorimetry and thermogravimetric analyses. Solvent-spread monolayer of AASM in combination with soyphosphatidylcholine (SPC) and cholesterol (CHOL) were studied using Langmuir surface balance. With increasing mole fraction of AASM mean molecular area increased and passed through maxima at ~60 mol% of AASMs, indicating molecular packing reorganization. Systems with 20 and 60 mol% AASM exhibited positive deviations from ideal behavior signifying repulsive interaction between the AASM and SPC, while synergistic interactions were established from the negative deviation at other combinations. Dynamic surface elasticity increased with increasing surface pressure signifying formation of rigid monolayer. Transition of monolayer from gaseous to liquid expanded to liquid condensed state was established by Brewster angle microscopic studies. Stability of the hybrid vesicles, formed by AASM+SPC+CHOL, was established by monitoring their size, zeta potential and polydispersity index values over 100 days. Size and spherical morphology of hybrid vesicles were confirmed by transmission electron microscopic studies. Biocompatibility of the hybrid vesicles were established by cytotoxicity studies revealing their possible applications in drug delivery and imaging.

11.
J Mater Chem B ; 12(1): 187-201, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38059523

RESUMO

The human world has been plagued with different kinds of bacterial infections from time immemorial. The increased development of resistance towards commercial antibiotics has made these bacterial infections an even more critical challenge. Bacteria have modified their mode of interactions with different types of commercial drugs by bringing changes to the receptor proteins or by other resisting mechanisms like drug efflux. Various chemical approaches have been made to date to fight against these smart adapting species. Towards this, we hypothesize chemically modifying the commercial antibacterial drugs in order to deceive the bacteria and destroy the bacterial biomass. In this study, different molecular weight polyethyleneimines are taken and conjugated with some well-known commercial drugs like penicillin and chloramphenicol to explore their antibacterial properties against some of the laboratory and uro-pathogenic strains of Gram-positive and Gram-negative bacteria. A detailed structure-activity relationship of these polymeric prodrug-like materials has been evaluated to determine the optimum formulation. The standardized system not only shows significant ∼90% bacterial killing in liquid broth culture, but also demonstrates promising bacterial inhibition towards biofilm formation for the pathogenic strains on inanimate surfaces like urinary catheters and on an in vivo mouse skin abrasion model. The reported bioactive polymeric materials can be successfully used for widespread therapeutic applications with promising medical relevance.


Assuntos
Antibacterianos , Infecções Bacterianas , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Relação Estrutura-Atividade
12.
ACS Appl Bio Mater ; 6(3): 1133-1145, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36877613

RESUMO

In the wake of the COVID-19 pandemic, millions of confirmed cases and deaths have been reported around the world. COVID-19 spread can be slowed and eventually stopped by a rapid test to diagnose positive cases of the disease on the spot. It is still important to test for COVID-19 quickly regardless of the availability of the vaccine. Using the binding-induced folding principle, we developed an electrochemical test for detecting SARS-CoV-2 with no RNA extraction or nucleic acid amplification. The test showed high sensitivity with a limit of detection of 2.5 copies/µL. An electrode mounted with a capture probe and a portable potentiostat are used to conduct the test. To target the N-gene of SARS-CoV-2, a highly specific oligo-capturing probe was used. Based on the binding-induced "folding" principle, the sensor detects binding between the oligo and RNA. When the target is absent, the capture probe tends to form a hairpin as a secondary structure, retaining the redox reporter close to the surface. This can be seen as a large anodic and cathodic peak current. When the target RNA is present, the hairpin structure will open to hybridize with its complementary sequence, causing the redox reporter to pull away from the electrode. Consequently, the anodic/cathodic peak currents are reduced, indicating the presence of the SARS-CoV-2 genetic material. Validation of the test performance was performed using 122 COVID-19 clinical samples (55 positives and 67 negatives) and benchmarked to the gold standard reverse transcription-polymerase chain reaction (RT-PCR) test. As a result of our test, the accuracy, sensitivity, and specificity have been measured at 98.4%, 98.2%, and 98.5%, respectively.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Sensibilidade e Especificidade , Nucleocapsídeo , DNA , RNA , Oligonucleotídeos
13.
PLoS One ; 18(12): e0290494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096254

RESUMO

COVID-19 has potential consequences on the pulmonary and cardiovascular health of millions of infected people worldwide. Chest computed tomographic (CT) imaging has remained the first line of diagnosis for individuals infected with SARS-CoV-2. However, differentiating COVID-19 from other types of pneumonia and predicting associated cardiovascular complications from the same chest-CT images have remained challenging. In this study, we have first used transfer learning method to distinguish COVID-19 from other pneumonia and healthy cases with 99.2% accuracy. Next, we have developed another CNN-based deep learning approach to automatically predict the risk of cardiovascular disease (CVD) in COVID-19 patients compared to the normal subjects with 97.97% accuracy. Our model was further validated against cardiac CT-based markers including cardiac thoracic ratio (CTR), pulmonary artery to aorta ratio (PA/A), and presence of calcified plaque. Thus, we successfully demonstrate that CT-based deep learning algorithms can be employed as a dual screening diagnostic tool to diagnose COVID-19 and differentiate it from other pneumonia, and also predicts CVD risk associated with COVID-19 infection.


Assuntos
COVID-19 , Aprendizado Profundo , Cardiopatias Congênitas , Pneumonia , Humanos , COVID-19/diagnóstico por imagem , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos , Teste para COVID-19
14.
Nanomedicine (Lond) ; 18(16): 1061-1073, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37610080

RESUMO

Aims: Among solid tumors, hypoxia is a common characteristic and responsible for chemotherapeutic resistance. Hypoxia-sensitive imaging probes are therefore essential for early tumor detection, growth monitoring and drug-response evaluation. Despite significant efforts, detecting hypoxic oxygen levels remains challenging. Materials & methods: This paper demonstrates the use of an amine-rich carbon dot probe functionalized with an imidazole group that exhibits reversible fluorescence switching in normoxic and hypoxic environments. Results & conclusion: We demonstrate the ability to emit near-infrared light only under hypoxic conditions. The probes are found to be biodegradable in the presence of human digestive enzymes such as lipase. Ex vivo tissue imaging experiments revealed promising near-infrared signals even at a depth of 5 mm for the probe under ex vivo imaging conditions.


Hypoxia is the state where oxygen is not adequately available at the tissue level and is the common cause of resistance toward chemotherapeutics. Hence, probes that can detect hypoxia are important in detecting early tumor progression. Here in this paper, we have developed a fluorescent probe which helps in determining normoxic and hypoxic environments. This probe emits near-infrared light only under hypoxic conditions. The phenomena have been established herein by extensive experiments.


Assuntos
Corantes Fluorescentes , Hipóxia , Humanos , Hipóxia/diagnóstico por imagem , Oxigênio , Aminas , Carbono
15.
Artigo em Inglês | MEDLINE | ID: mdl-35975704

RESUMO

The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.


Assuntos
Nanopartículas , Humanos , Metástase Linfática , Nanopartículas/química , Linfonodos/patologia , Corantes , Carbono
16.
Adv Sci (Weinh) ; 10(36): e2304009, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870167

RESUMO

Early detection of Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) is the key to controlling the spread of these bacterial infections. An important step in developing biosensors involves identifying reliable sensing probes against specific genetic targets for CT and NG. Here, the authors have designed single-stranded oligonucleotides (ssDNAs) targeting mutually conserved genetic regions of cryptic plasmid and chromosomal DNA of both CT and NG. The 5'- and 3'- ends of these ssDNAs are differentially functionalized with thiol groups and coupled with gold nanoparticles (AuNP) to develop absorbance-based assay. The AuNPs agglomerate selectively in the presence of its target DNA sequence and demonstrate a change in their surface plasmon resonance. The optimized assay is then used to detect both CT and NG DNA extracted from 60 anonymized clinical samples with a clinical sensitivity of ∼100%. The limit of detection of the assays are found to be 7 and 5 copies/µL for CT and NG respectively. Furthermore, it can successfully detect the DNA levels of these two bacteria without the need for DNA extraction and via a lateral flow-based platform. These assays thus hold the potential to be employed in clinics for rapid and efficient monitoring of sexually transmitted infections.


Assuntos
Infecções por Chlamydia , Gonorreia , Nanopartículas Metálicas , Humanos , Neisseria gonorrhoeae/genética , Chlamydia trachomatis/genética , Ouro , Oligonucleotídeos , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/microbiologia , Sensibilidade e Especificidade , Gonorreia/diagnóstico , Gonorreia/microbiologia , DNA
17.
J Biomed Opt ; 28(8): 082807, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37427335

RESUMO

Significance: Carbon dots (CDs) have attracted a host of research interest in recent years mainly due to their unique photoluminescence (PL) properties that make them applicable in various biomedical areas, such as imaging and image-guided therapy. However, the real mechanism underneath the PL is a subject of wide controversy and can be investigated from various angles. Aim: Our work investigates the effect of the isomeric nitrogen position as the precursor in the synthesis of CDs by shedding light on their photophysical properties on the single particles and ensemble level. Approach: To this end, we adopted five isomers of diaminopyridine (DAP) and urea as the precursors and obtained CDs during a hydrothermal process. The various photophysical properties were further investigated in depth by mass spectroscopy. CD molecular frontier orbital analyses aided us in justifying the fluorescence emission profile on the bulk level as well as the charge transfer processes. As a result of the varying fluorescent responses, we indicate that these particles can be utilized for machine learning (ML)-driven sensitive detection of oral microbiota. The sensing results were further supported by density functional theoretical calculations and docking studies. Results: The generating isomers have a significant effect on the overall photophysical properties at the bulk/ensembled level. On the single-particle level, although some of the photophysical properties such as average intensity remained the same, the overall differences in brightness, photo-blinking frequency, and bleaching time between the five samples were conceived. The various photophysical properties could be explained based on the different chromophores formed during the synthesis. Overall, an array of CDs was demonstrated herein to achieve ∼100% separation efficacy in segregating a mixed oral microbiome culture in a rapid (<0.5 h), high-throughput manner with superior accuracy. Conclusions: We have indicated that the PL properties of CDs can be regulated by the precursors' isomeric position of nitrogen. We emancipated this difference in a rapid method relying on ML algorithms to segregate the dental bacterial species as biosensors.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Corantes Fluorescentes/química , Carbono , Aminas , Imagem Óptica , Nitrogênio , Pontos Quânticos/química
18.
ACS Nano ; 17(17): 16952-16959, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37585264

RESUMO

All-dielectric optical metasurfaces can locally control the amplitude and phase of light at the nanoscale, enabling arbitrary wavefront shaping. However, lack of postfabrication tunability has limited the true potential of metasurfaces for many applications. Here, we utilize a thin liquid crystal (LC) layer as a tunable medium surrounding the metasurface to achieve a phase-only spatial light modulator (SLM) with high reflection in the visible frequency, exhibiting active and continuous resonance tuning with associated 2π phase control and uncoupled amplitude. Dynamic wavefront shaping is demonstrated by programming 96 individually addressable electrodes with a small pixel pitch of ∼1 µm. The small pixel size is facilitated by the reduced LC thickness, strongly suppressing cross-talk among pixels. This device is used to demonstrate dynamic beam steering with a wide field-of-view and high absolute diffraction efficiencies. We believe that our demonstration may help realize next-generation, high-resolution SLMs, with wide applications in dynamic holography, tunable optics, and light detection and ranging (LiDAR), to mention a few.

19.
Adv Mater ; 35(34): e2205367, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36341483

RESUMO

All-dielectric metasurfaces provide unique solutions for advanced wavefront manipulation of light with complete control of amplitude and phase at sub-wavelength scales. One limitation, however, for most of these devices is the lack of any post-fabrication tunability of their response. To break this limit, a promising approach is employing phase-change materials (PCMs), which provide fast, low energy, and non-volatile means to endow metasurfaces with a switching mechanism. In this regard, great advancements have been done in the mid-infrared and near-infrared spectrum using different chalcogenides. In the visible spectral range, however, very few devices have demonstrated full phase manipulation, high efficiencies, and reversible optical modulation. In this work, a programmable all-dielectric Huygens' metasurface made of antimony sulfide (Sb2 S3 ) PCM is experimentally demonstrated, a low loss and high-index material in the visible spectral range with a large contrast (≈0.5) between its amorphous and crystalline states. ≈2π phase modulation is shown with high associated transmittance and it is used to create programmable beam-steering devices. These novel chalcogenide PCM metasurfaces have the potential to emerge as a platform for next-generation spatial light modulators and to impact application areas such as programmable and adaptive flat optics, light detection and ranging (LiDAR), and many more.

20.
Chem Commun (Camb) ; 59(90): 13434-13437, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37847141

RESUMO

The improper disposal of hospital waste products containing genetic materials poses a serious safety threat. We present herein an environmentally friendly technology using a graphene-based novel carbon-allotropic surface to remediate such wastes. The used carbon-allotrope is decorated with an enediyne (EDE-1) enriched aromatic pi-conjugated structure to create an efficient and active surface for cleaving DNA strands. Under controlled exposure of ultraviolet (UV) radiation and heat, the developed surface influences genetic degradation without disturbing the bacterial populations present downstream of the water treatment system. The designed material has been extensively characterized using physicochemical and biological tools. Our results indicate that this approach can possibly be introduced in large scale hospital waste disposal streams for remediating genetic hazards and thereby developing a portable self-contained system.


Assuntos
Carbono , Grafite , Bactérias , DNA , Enedi-Inos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA