Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 31(19): 3231-3244, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35234901

RESUMO

BACKGROUND: The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS: Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS: Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION: We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.


Assuntos
Doenças Cerebelares , Proteínas de Drosophila , Deficiência Intelectual , Malformações do Sistema Nervoso , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Doenças Cerebelares/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Neuroglia , Proteínas Repressoras
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479178

RESUMO

Regulation of microtubule stability is crucial for the maintenance of cell structure and function. While the acetylation of α-tubulin lysine 40 by acetylase has been implicated in the regulation of microtubule stability, the in vivo functions of N-terminal acetyltransferases (NATs) involved in the acetylation of N-terminal amino acids are not well known. Here, we identify an N-terminal acetyltransferase, Mnat9, that regulates cell signaling and microtubule stability in Drosophila Loss of Mnat9 causes severe developmental defects in multiple tissues. In the wing imaginal disc, Mnat9 RNAi leads to the ectopic activation of c-Jun N-terminal kinase (JNK) signaling and apoptotic cell death. These defects are suppressed by reducing the level of JNK signaling. Overexpression of Mnat9 can also inhibit JNK signaling. Mnat9 colocalizes with mitotic spindles, and its loss results in various spindle defects during mitosis in the syncytial embryo. Furthermore, overexpression of Mnat9 enhances microtubule stability. Mnat9 is physically associated with microtubules and shows a catalytic activity in acetylating N-terminal peptides of α- and ß-tubulin in vitro. Cell death and tissue loss in Mnat9-depleted wing discs are restored by reducing the severing protein Spastin, suggesting that Mnat9 protects microtubules from its severing activity. Remarkably, Mnat9 mutated in the acetyl-CoA binding site is as functional as its wild-type form. We also find that human NAT9 can rescue Mnat9 RNAi phenotypes in flies, indicating their functional conservation. Taken together, we propose that Mnat9 is required for microtubule stability and regulation of JNK signaling to promote cell survival in developing Drosophila organs.


Assuntos
Drosophila melanogaster/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Acetiltransferases N-Terminal/genética , Animais , Apoptose/genética , Drosophila melanogaster/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Microtúbulos/genética , Mitose/genética , Transdução de Sinais/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
3.
Genet Med ; 25(6): 100833, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37013900

RESUMO

PURPOSE: Myocardin-related transcription factor B (MRTFB) is an important transcriptional regulator, which promotes the activity of an estimated 300 genes but is not known to underlie a Mendelian disorder. METHODS: Probands were identified through the efforts of the Undiagnosed Disease Network. Because the MRTFB protein is highly conserved between vertebrate and invertebrate model organisms, we generated a humanized Drosophila model expressing the human MRTFB protein in the same spatial and temporal pattern as the fly gene. Actin binding assays were used to validate the effect of the variants on MRTFB. RESULTS: Here, we report 2 pediatric probands with de novo variants in MRTFB (p.R104G and p.A91P) and mild dysmorphic features, intellectual disability, global developmental delays, speech apraxia, and impulse control issues. Expression of the variants within wing tissues of a fruit fly model resulted in changes in wing morphology. The MRTFBR104G and MRTFBA91P variants also display a decreased level of actin binding within critical RPEL domains, resulting in increased transcriptional activity and changes in the organization of the actin cytoskeleton. CONCLUSION: The MRTFBR104G and MRTFBA91P variants affect the regulation of the protein and underlie a novel neurodevelopmental disorder. Overall, our data suggest that these variants act as a gain of function.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Criança , Humanos , Drosophila/genética , Actinas/genética , Mutação com Ganho de Função , Fatores de Transcrição/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
4.
Cell Metab ; 35(5): 855-874.e5, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37084732

RESUMO

VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/farmacologia , Doenças Neuroinflamatórias , Bezafibrato , Propilenoglicóis/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Neuroglia/metabolismo , Ácidos Graxos
5.
Cell Death Dis ; 13(2): 101, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110540

RESUMO

Hippo signaling is a conserved mechanism for controlling organ growth. Increasing evidence suggests that Hippo signaling is modulated by various cellular factors for normal development and tumorigenesis. Hence, identification of these factors is pivotal for understanding the mechanism for the regulation of Hippo signaling. Drosophila Mnat9 is a putative N-acetyltransferase that is required for cell survival by affecting JNK signaling. Here we show that Mnat9 is involved in the negative regulation of Hippo signaling. RNAi knockdown of Mnat9 in the eye disc suppresses the rough eye phenotype of overexpressing Crumbs (Crb), an upstream factor of the Hippo pathway. Conversely, Mnat9 RNAi enhances the eye phenotype caused by overexpressing Expanded (Ex) or Warts (Wts) that acts downstream to Crb. Similar genetic interactions between Mnat9 and Hippo pathway genes are found in the wing. The reduced wing phenotype of Mnat9 RNAi is suppressed by overexpression of Yorkie (Yki), while it is suppressed by knockdown of Hippo upstream factors like Ex, Merlin, or Kibra. Mnat9 co-immunoprecipitates with Mer, implying their function in a protein complex. Furthermore, Mnat9 overexpression together with Hpo knockdown causes tumorous overgrowth in the abdomen. Our data suggest that Mnat9 is required for organ growth and can induce tumorous growth by negatively regulating the Hippo signaling pathway.


Assuntos
Carcinogênese/metabolismo , Drosophila melanogaster/metabolismo , Via de Sinalização Hippo , Acetiltransferases N-Terminal/metabolismo , Animais , Carcinogênese/patologia , Olho Composto de Artrópodes/crescimento & desenvolvimento , Olho Composto de Artrópodes/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Acetiltransferases N-Terminal/genética , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno , Asas de Animais/metabolismo
6.
Bio Protoc ; 11(23): e4241, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35005086

RESUMO

Regulation of microtubule stability is crucial for diverse biological processes, including cell division, morphogenesis, and signaling. Various in vitro assays for microtubule stability have been developed to identify and characterize proteins involved in controlling microtubule stability. Here, we introduce a simple ex-vivo assay for identifying potential microtubule regulators in the wing imaginal disc of Drosophila melanogaster. This assay utilizes silicon rhodamine-tubulin (SiR-Tub) as a cell-permeable fluorogenic dye for labeling microtubules. In an attempt to increase the sensitivity of the screen, we designed an assay using a sensitized microtubule condition. Wing discs are treated with SiR-Tub followed by demecolcine, a microtubule inhibitor, to partially label impaired microtubules. Under this sensitized condition, we can test whether overexpression or downregulation of a gene can enhance or suppress the weakened SiR-Tub labeling. This assay allows highly sensitive detection of microtubules in developing larval tissues. Hence, it provides a useful tool for identifying new microtubule regulators in both unfixed and fixed imaginal discs in Drosophila. This strategy may also be applied to characterize microtubule regulators in tissues from other model organisms. Graphic abstract: Graphical summary of Ex-vivo microtubule stability assay using Drosophila wing disc.

7.
Cell Death Dis ; 12(9): 811, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453033

RESUMO

Regulation of cell survival is critical for organ development. Translationally controlled tumor protein (TCTP) is a conserved protein family implicated in the control of cell survival during normal development and tumorigenesis. Previously, we have identified a human Topoisomerase II (TOP2) as a TCTP partner, but its role in vivo has been unknown. To determine the significance of this interaction, we examined their roles in developing Drosophila organs. Top2 RNAi in the wing disc leads to tissue reduction and caspase activation, indicating the essential role of Top2 for cell survival. Top2 RNAi in the eye disc also causes loss of eye and head tissues. Tctp RNAi enhances the phenotypes of Top2 RNAi. The depletion of Tctp reduces Top2 levels in the wing disc and vice versa. Wing size is reduced by Top2 overexpression, implying that proper regulation of Top2 level is important for normal organ development. The wing phenotype of Tctp RNAi is partially suppressed by Top2 overexpression. This study suggests that mutual regulation of Tctp and Top2 protein levels is critical for cell survival during organ development.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Organogênese , Animais , Sobrevivência Celular/genética , Drosophila melanogaster/genética , Epistasia Genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Organogênese/genética , Fenótipo , Interferência de RNA , Asas de Animais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA