Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(27): e2119015119, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759664

RESUMO

Controlled electrobreakdown of graphene is important for the fabrication of stable nanometer-size tunnel gaps, large-scale graphene quantum dots, and nanoscale resistive switches, etc. However, owing to the complex thermal, electronic, and electrochemical processes at the nanoscale that dictate the rupture of graphene, it is difficult to generate conclusions from individual devices. We describe here a way to explore the statistical signature of the graphene electrobreakdown process. Such analysis tells us that feedback-controlled electrobreakdown of graphene in the air first shows signs of joule heating-induced cleaning followed by rupturing of the graphene lattice that is manifested by the lowering of its conductance. We show that when the conductance of the graphene becomes smaller than around 0.1 G0, the effective graphene notch width starts to decrease exponentially slower with time. Further, we show how this signature gets modified as we change the environment and or the substrate. Using statistical analysis, we show that the electrobreakdown under a high vacuum could lead to substrate modification and resistive-switching behavior, without the application of any electroforming voltage. This is attributed to the formation of a semiconducting filament that makes a Schottky barrier with the graphene. We also provide here the statistically extracted Schottky barrier threshold voltages for various substrate studies. Such analysis not only gives a better understanding of the electrobreakdown of graphene but also can serve as a tool in the future for single-molecule diagnostics.

2.
Nat Mater ; 22(2): 180-185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36732344

RESUMO

Only single-electron transistors with a certain level of cleanliness, where all states can be properly accessed, can be used for quantum experiments. To reveal their exceptional properties, carbon nanomaterials need to be stripped down to a single element: graphene has been exfoliated into a single sheet, and carbon nanotubes can reveal their vibrational, spin and quantum coherence properties only after being suspended across trenches1-3. Molecular graphene nanoribbons4-6 now provide carbon nanostructures with single-atom precision but suffer from poor solubility, similar to carbon nanotubes. Here we demonstrate the massive enhancement of the solubility of graphene nanoribbons by edge functionalization, to yield ultra-clean transport devices with sharp single-electron features. Strong electron-vibron coupling leads to a prominent Franck-Condon blockade, and the atomic definition of the edges allows identifying the associated transverse bending mode. These results demonstrate how molecular graphene can yield exceptionally clean electronic devices directly from solution. The sharpness of the electronic features opens a path to the exploitation of spin and vibrational properties in atomically precise graphene nanostructures.

3.
Angew Chem Int Ed Engl ; 63(16): e202401323, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410064

RESUMO

When designing a molecular electronic device for a specific function, it is necessary to control whether the charge-transport mechanism is phase-coherent transmission or particle-like hopping. Here we report a systematic study of charge transport through single zinc-porphyrin molecules embedded in graphene nanogaps to form transistors, and show that the transport mechanism depends on the chemistry of the molecule-electrode interfaces. We show that van der Waals interactions between molecular anchoring groups and graphene yield transport characteristic of Coulomb blockade with incoherent sequential hopping, whereas covalent molecule-electrode amide bonds give intermediately or strongly coupled single-molecule devices that display coherent transmission. These findings demonstrate the importance of interfacial engineering in molecular electronic circuits.

4.
J Am Chem Soc ; 145(28): 15265-15274, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417934

RESUMO

Since the early days of quantum mechanics, it has been known that electrons behave simultaneously as particles and waves, and now quantum electronic devices can harness this duality. When devices are shrunk to the molecular scale, it is unclear under what conditions does electron transmission remain phase-coherent, as molecules are usually treated as either scattering or redox centers, without considering the wave-particle duality of the charge carrier. Here, we demonstrate that electron transmission remains phase-coherent in molecular porphyrin nanoribbons connected to graphene electrodes. The devices act as graphene Fabry-Pérot interferometers and allow for direct probing of the transport mechanisms throughout several regimes. Through electrostatic gating, we observe electronic interference fringes in transmission that are strongly correlated to molecular conductance across multiple oxidation states. These results demonstrate a platform for the use of interferometric effects in single-molecule junctions, opening up new avenues for studying quantum coherence in molecular electronic and spintronic devices.

5.
Bioconjug Chem ; 34(1): 78-84, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35969686

RESUMO

The ability to control the assembly of mixed-dimensional heterostructures with nanoscale control is key for the fabrication of novel nanohybrid systems with new functionalities, particularly for optoelectronics applications. Herein we report a strategy to control the assembly of heterostructures and tune their electronic coupling employing DNA as a linker. We functionalized MoS2 nanosheets (NSs) with biotin-terminated dsDNA employing three different chemical strategies, namely, thiol, maleimide, and aryl diazonium. This allowed us to then tether streptavidinated quantum dots (QDs) to the DNA functionalized MoS2 surface via biotin-avidin recognition. Nanoscale control over the separation between QDs and NSs was achieved by varying the number of base pairs (bp) constituting the DNA linker, between 10, 20, and 30 bp, corresponding to separations of 3.4, 6.8, and 13.6 nm, respectively. Spectroscopic data confirmed the successful functionalization, while atomic force and transmission electron microscopy were employed to image the nanohybrids. In solution steady-state and time-resolved photoluminescence demonstrated the electronic coupling between the two nanostructures, that in turn was observed to progressively scale as a function of DNA linker employed and hence distance between the two nanomoieties in the hybrids.


Assuntos
Nanoestruturas , Pontos Quânticos , Pontos Quânticos/química , Molibdênio/química , Biotina/química , Nanoestruturas/química , DNA
6.
Phys Rev Lett ; 129(20): 207702, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36462006

RESUMO

The outcome of an electron-transfer process is determined by the quantum-mechanical interplay between electronic and vibrational degrees of freedom. Nonequilibrium vibrational dynamics are known to direct electron-transfer mechanisms in molecular systems; however, the structural features of a molecule that lead to certain modes being pushed out of equilibrium are not well understood. Herein, we report on electron transport through a porphyrin dimer molecule, weakly coupled to graphene electrodes, that displays sequential tunneling within the Coulomb-blockade regime. The sequential transport is initiated by current-induced phonon absorption and proceeds by rapid sequential transport via a nonequilibrium vibrational distribution of low-energy modes, likely related to torsional molecular motions. We demonstrate that this is an experimental signature of slow vibrational dissipation, and obtain a lower bound for the vibrational relaxation time of 8 ns, a value dependent on the molecular charge state.

7.
Microsc Microanal ; : 1-17, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644675

RESUMO

Over the last few years, a new mode for imaging in the scanning transmission electron microscope (STEM) has gained attention as it permits the direct visualization of sample conductivity and electrical connectivity. When the electron beam (e-beam) is focused on the sample in the STEM, secondary electrons (SEs) are generated. If the sample is conductive and electrically connected to an amplifier, the SE current can be measured as a function of the e-beam position. This scenario is similar to the better-known scanning electron microscopy-based technique, electron beam-induced current imaging, except that the signal in the STEM is generated by the emission of SEs, hence the name secondary electron e-beam-induced current (SEEBIC), and in this case, the current flows in the opposite direction. Here, we provide a brief review of recent work in this area, examine the various contrast generation mechanisms associated with SEEBIC, and illustrate its use for the characterization of graphene nanoribbon devices.

8.
Chem Soc Rev ; 50(8): 4974-4992, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33623941

RESUMO

Nanopores in solid-state membranes are promising for a wide range of applications including DNA sequencing, ultra-dilute analyte detection, protein analysis, and polymer data storage. Techniques to fabricate solid-state nanopores have typically been time consuming or lacked the resolution to create pores with diameters down to a few nanometres, as required for the above applications. In recent years, several methods to fabricate nanopores in electrolyte environments have been demonstrated. These in situ methods include controlled breakdown (CBD), electrochemical reactions (ECR), laser etching and laser-assisted controlled breakdown (la-CBD). These techniques are democratising solid-state nanopores by providing the ability to fabricate pores with diameters down to a few nanometres (i.e. comparable to the size of many analytes) in a matter of minutes using relatively simple equipment. Here we review these in situ solid-state nanopore fabrication techniques and highlight the challenges and advantages of each method. Furthermore we compare these techniques by their desired application and provide insights into future research directions for in situ nanopore fabrication methods.

9.
Nano Lett ; 21(22): 9715-9719, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766782

RESUMO

Single molecules are nanoscale thermodynamic systems with few degrees of freedom. Thus, the knowledge of their entropy can reveal the presence of microscopic electron transfer dynamics that are difficult to observe otherwise. Here, we apply thermocurrent spectroscopy to directly measure the entropy of a single free radical molecule in a magnetic field. Our results allow us to uncover the presence of a singlet to triplet transition in one of the redox states of the molecule, not detected by conventional charge transport measurements. This highlights the power of thermoelectric measurements which can be used to determine the difference in configurational entropy between the redox states of a nanoscale system involved in conductance without any prior assumptions about its structure or microscopic dynamics.


Assuntos
Entropia , Transporte de Elétrons , Análise Espectral , Termodinâmica
10.
Small ; 17(37): e2102543, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34337856

RESUMO

Controlled breakdown has recently emerged as a highly appealing technique to fabricate solid-state nanopores for a wide range of biosensing applications. This technique relies on applying an electric field of approximately 0.4-1 V nm-1 across the membrane to induce a current, and eventually, breakdown of the dielectric. Although previous studies have performed controlled breakdown under a range of different conditions, the mechanism of conduction and breakdown has not been fully explored. Here, electrical conduction and nanopore formation in SiNx membranes during controlled breakdown is studied. It is demonstrated that for Si-rich SiNx , oxidation reactions that occur at the membrane-electrolyte interface limit conduction across the dielectric. However, for stoichiometric Si3 N4 the effect of oxidation reactions becomes relatively small and conduction is predominately limited by charge transport across the dielectric. Several important implications resulting from understanding this process are provided which will aid in further developing controlled breakdown in the coming years, particularly for extending this technique to integrate nanopores with on-chip nanostructures.


Assuntos
Nanoporos , Condutividade Elétrica , Nanotecnologia , Análise de Sequência com Séries de Oligonucleotídeos
11.
Nanotechnology ; 32(16): 162003, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33543734

RESUMO

Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a view to what the future holds. Materials and devices with nanoscale features are used for quantum metrology and sensing, as building blocks for quantum computing, and as sources and detectors for quantum communication. They enable explorations of quantum behaviour and unconventional states in nano- and opto-mechanical systems, low-dimensional systems, molecular devices, nano-plasmonics, quantum electrodynamics, scanning tunnelling microscopy, and more. This rapidly expanding intersection of nanotechnology and quantum science/technology is mutually beneficial to both fields, laying claim to some of the most exciting scientific leaps of the last decade, with more on the horizon.

12.
Nutr Health ; 27(3): 357-364, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33745382

RESUMO

BACKGROUND: Obesity is a major health problem worldwide, and one of its causes is unhealthy eating. A healthy diet should ensure that energy intake (calories) is in balance with energy expenditure, but in this paper a subjective experience of healthy eating will be discussed. Research has revealed many determinants of food consumption, but a more holistic view of food consumption is often overlooked. AIM: The aim was to go beyond identifying determinants of eating by exploring the experience of (healthy) food for people with obesity. METHODS: Semi-structured interviews were conducted with eight patients with obesity. RESULTS: Interpretative phenomenological analysis identified four superordinate themes: ambivalence in the emotional relationship with food, an obesogenic environment where it is less acceptable to society to be obese, an experience of unfairness in the relationship to eating in comparison with other people, and the parental role as an existential motivation to eat healthier. CONCLUSION: The relationship of people with obesity and food is highly complex and personal, and is influenced by the uncontrollability of the social and physical environment. These personal experiences of people with obesity should be taken into account in the psychological treatment of obesity. The current research adds to the mostly motivational determinants discovered with social cognition models, by showing the subjective experience of (healthy) food consumption for people with obesity.


Assuntos
Ingestão de Energia , Motivação , Comportamento Alimentar , Alimentos , Humanos , Obesidade/etiologia , Pesquisa Qualitativa
13.
Entropy (Basel) ; 23(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063893

RESUMO

The entropy of a system gives a powerful insight into its microscopic degrees of freedom; however, standard experimental ways of measuring entropy through heat capacity are hard to apply to nanoscale systems, as they require the measurement of increasingly small amounts of heat. Two alternative entropy measurement methods have been recently proposed for nanodevices: through charge balance measurements and transport properties. We describe a self-consistent thermodynamic framework for applying thermodynamic relations to few-electron nanodevices-small systems, where fluctuations in particle number are significant, whilst highlighting several ongoing misconceptions. We derive a relation (a consequence of a Maxwell relation for small systems), which describes both existing entropy measurement methods as special cases, while also allowing the experimentalist to probe the intermediate regime between them. Finally, we independently prove the applicability of our framework in systems with complex microscopic dynamics-those with many excited states of various degeneracies-from microscopic considerations.

14.
Am Heart J ; 226: 60-68, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32512291

RESUMO

There is much debate on the use of angiotensin receptor blockers (ARBs) in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-infected patients. Although it has been suggested that ARBs might lead to a higher susceptibility and severity of SARS-CoV-2 infection, experimental data suggest that ARBs may reduce acute lung injury via blocking angiotensin-II-mediated pulmonary permeability, inflammation, and fibrosis. However, despite these hypotheses, specific studies on ARBs in SARS-CoV-2 patients are lacking. METHODS: The PRAETORIAN-COVID trial is a multicenter, double-blind, placebo-controlled 1:1 randomized clinical trial in adult hospitalized SARS-CoV-2-infected patients (n = 651). The primary aim is to investigate the effect of the ARB valsartan compared to placebo on the composite end point of admission to an intensive care unit, mechanical ventilation, or death within 14 days of randomization. The active-treatment arm will receive valsartan in a dosage titrated to blood pressure up to a maximum of 160 mg bid, and the placebo arm will receive matching placebo. Treatment duration will be 14 days, or until the occurrence of the primary end point or until hospital discharge, if either of these occurs within 14 days. The trial is registered at clinicaltrials.gov (NCT04335786, 2020). SUMMARY: The PRAETORIAN-COVID trial is a double-blind, placebo-controlled 1:1 randomized trial to assess the effect of valsartan compared to placebo on the occurrence of ICU admission, mechanical ventilation, and death in hospitalized SARS-CoV-2-infected patients. The results of this study might impact the treatment of SARS-CoV-2 patients globally.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Betacoronavirus , Unidades de Cuidados Coronarianos , Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome do Desconforto Respiratório/prevenção & controle , Valsartana/uso terapêutico , Adulto , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , COVID-19 , Infecções por Coronavirus/mortalidade , Método Duplo-Cego , Esquema de Medicação , Humanos , Pacientes Internados , Estudos Multicêntricos como Assunto , Países Baixos , Pandemias , Placebos/uso terapêutico , Pneumonia Viral/mortalidade , Respiração Artificial , Síndrome do Desconforto Respiratório/mortalidade , SARS-CoV-2 , Fatores de Tempo , Valsartana/administração & dosagem
15.
J Interv Cardiol ; 2020: 8821525, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363447

RESUMO

OBJECTIVES: To assess the safety and efficacy of pre-emptive treatment of optical coherence tomography- (OCT-) derived vulnerable, non-flow-limiting, non-culprit lesions in patients with myocardial infarction (MI). BACKGROUND: Intracoronary imaging with OCT can aid in the decision to treat non-flow-limiting lesions by identifying vulnerable plaques. Pre-emptive treatment of these lesions might improve patient outcome by "sealing" these plaques. Bioresorbable vascular scaffolds (BVS) have theoretical benefit for this treatment because they dissolve completely over time. METHODS: In patients presenting with MI, non-culprit lesions with a fractional flow reserve ≥0.8 were imaged with OCT. Vulnerable plaques were randomised to either percutaneous coronary intervention (PCI) with bioresorbable vascular scaffold (BVS) placement or optimal medicinal therapy (OMT). The primary outcome was a composite of all-cause mortality, non-fatal MI, and unplanned revascularisation at 1-year follow-up. RESULTS: The trial was stopped prematurely after retraction from the market of the Absorb BVS. At that time, a total of 34 patients were randomised. At two years, the composite endpoint occurred 3 times (18.8%) in the BVS group and 1 time (6.3%) in the OMT group. Apart from one elective PCI for stable angina in the OMT group, no target lesions in any group were revascularised. CONCLUSIONS: Pre-emptive stenting of vulnerable plaques had no evident benefit compared to conservative treatment. However, due to the low number of included patients, no definite conclusions could be drawn. Identifying and potentially treating vulnerable plaques remains an important target for future research. This trial is registered under https://www.trialregister.nl/trial/NL4177 on 08-12-2015.


Assuntos
Implantes Absorvíveis , Vasos Coronários , Infarto do Miocárdio , Intervenção Coronária Percutânea , Alicerces Teciduais , Tomografia de Coerência Óptica/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Vasos Coronários/cirurgia , Feminino , Reserva Fracionada de Fluxo Miocárdico , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Avaliação de Processos e Resultados em Cuidados de Saúde , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/instrumentação , Intervenção Coronária Percutânea/métodos , Análise de Sobrevida
16.
Nano Lett ; 18(4): 2467-2474, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29510053

RESUMO

Two-dimensional materials are being increasingly studied, particularly for flexible and wearable technologies because of their inherent thickness and flexibility. Crucially, one aspect where our understanding is still limited is on the effect of mechanical strain, not on individual sheets of materials, but when stacked together as heterostructures in devices. In this paper, we demonstrate the use of Kelvin probe microscopy in capturing the influence of uniaxial tensile strain on the band-structures of graphene and WS2 (mono- and multilayered) based heterostructures at high resolution. We report a major advance in strain characterization tools through enabling a single-shot capture of strain defined changes in a heterogeneous system at the nanoscale, overcoming the limitations (materials, resolution, and substrate effects) of existing techniques such as optical spectroscopy. Using this technique, we observe that the work-functions of graphene and WS2 increase as a function of strain, which we attribute to the Fermi level lowering from increased p-doping. We also extract the nature of the interfacial heterojunctions and find that they get strongly modulated from strain. We observe that the strain-enhanced charge transfer with the substrate plays a dominant role, causing the heterostructures to behave differently from two-dimensional materials in their isolated forms.

17.
Nano Lett ; 18(12): 7719-7725, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30418781

RESUMO

The influence of nanostructuring and quantum confinement on the thermoelectric properties of materials has been extensively studied. While this has made possible multiple breakthroughs in the achievable figure of merit, classical confinement, and its effect on the local Seebeck coefficient has mostly been neglected, as has the Peltier effect in general due to the complexity of measuring small temperature gradients locally. Here we report that reducing the width of a graphene channel to 100 nm changes the Seebeck coefficient by orders of magnitude. Using a scanning thermal microscope allows us to probe the local temperature of electrically contacted graphene two-terminal devices or to locally heat the sample. We show that constrictions in mono- and bilayer graphene facilitate a spatially correlated gradient in the Seebeck and Peltier coefficient, as evidenced by the pronounced thermovoltage Vth and heating/cooling response Δ TPeltier, respectively. This geometry dependent effect, which has not been reported previously in 2D materials, has important implications for measurements of patterned nanostructures in graphene and points to novel solutions for effective thermal management in electronic graphene devices or concepts for single material thermocouples.

18.
J Chem Phys ; 149(15): 154112, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30342434

RESUMO

Charge transport through molecular junctions is often described either as a purely coherent or a purely classical phenomenon, and described using the Landauer-Büttiker formalism or Marcus theory (MT), respectively. Using a generalised quantum master equation, we here derive an expression for current through a molecular junction modelled as a single electronic level coupled with a collection of thermalised vibrational modes. We demonstrate that the aforementioned theoretical approaches can be viewed as two limiting cases of this more general expression and present a series of approximations of this result valid at higher temperatures. We find that MT is often insufficient in describing the molecular charge transport characteristics and gives rise to a number of artefacts, especially at lower temperatures. Alternative expressions, retaining its mathematical simplicity, but rectifying those shortcomings, are suggested. In particular, we show how lifetime broadening can be consistently incorporated into MT, and we derive a low-temperature correction to the semi-classical Marcus hopping rates. Our results are applied to examples building on phenomenological as well as microscopically motivated electron-vibrational coupling. We expect them to be particularly useful in experimental studies of charge transport through single-molecule junctions as well as self-assembled monolayers.

19.
Proc Natl Acad Sci U S A ; 112(9): 2658-63, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730863

RESUMO

Provided the electrical properties of electroburnt graphene junctions can be understood and controlled, they have the potential to underpin the development of a wide range of future sub-10-nm electrical devices. We examine both theoretically and experimentally the electrical conductance of electroburnt graphene junctions at the last stages of nanogap formation. We account for the appearance of a counterintuitive increase in electrical conductance just before the gap forms. This is a manifestation of room-temperature quantum interference and arises from a combination of the semimetallic band structure of graphene and a cross-over from electrodes with multiple-path connectivity to single-path connectivity just before breaking. Therefore, our results suggest that conductance enlargement before junction rupture is a signal of the formation of electroburnt junctions, with a picoscale current path formed from a single sp(2) bond.

20.
Nano Lett ; 17(6): 3688-3693, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28481105

RESUMO

Graphene nanogap electrodes have been of recent interest in a variety of fields, ranging from molecular electronics to phase change memories. Several recent reports have highlighted that scaling graphene nanogaps to even smaller sizes is a promising route to more efficient and robust molecular and memory devices. Despite the significant interest, the operating and scaling limits of these electrodes are completely unknown. In this paper, we report on our observations of consistent voltage driven resistance switching in sub-5 nm graphene nanogaps. We find that such electrical switching from an insulating state to a conductive state occurs at very low currents and voltages (0.06 µA and 140 mV), independent of the conditions (room ambient, low temperatures, as well as in vacuum), thus portending potential limits to scaling of functional devices with carbon electrodes. We then associate this phenomenon to the formation and rupture of carbon chains. Using a phase change material in the nanogap as a demonstrator device, fabricated using a self-alignment technique, we show that for gap sizes approaching 1 nm the switching is dominated by such carbon chain formation, creating a fundamental scaling limit for potential devices. These findings have important implications, not only for fundamental science, but also in terms of potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA